Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1579-1586, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621942

ABSTRACT

This study aims to investigate the effects of Gualou Xiebai Banxia Decoction(GXBD) on type 2 diabetes mellitus(T2DM) combined with acute myocardial infarction(AMI) in rats via chemerin/chemokine-like receptor 1(CMKLR1)/peroxisome proliferator-activated receptor α(PPARα) signaling pathway, and to explore the mechanism of GXBD in alleviating glucose and lipid metabolism disorders. The SD rats were randomized into control, model, positive control, and low-and high-dose GXBD groups. The rat model of T2DM was established by administration with high-fat emulsion(HFE) by gavage and intraperitoneal injection with streptozotocin, and then coronary artery ligation was performed to induce AMI. The control and model groups were administrated with the equal volume of normal saline, and other groups were administrated with corresponding drugs by gavage. Changes in relevant metabolic indicators were assessed by ELISA and biochemical assays, and the protein levels of chemerin, CMKLR1, and PPARα in the liver, abdominal fat, and heart were determined by Western blot. The results showed that GXBD alleviated the myocardial damage and reduced the levels of blood lipids, myocardial enzymes, and inflammatory cytokines, while it did not lead to significant changes in blood glucose. Compared with the model group, GXBD down-regulated the expression of chemerin in peripheral blood and up-regulated the expression of cyclic adenosine monophosphate(cAMP) and protein kinase A(PKA) in the liver. After treatment with GXBD, the protein levels of chemerin and CMKLR1 in the liver, abdominal fat, and heart were down-regulated, while the protein levels of PPARα in the liver and abdominal fat were up-regulated. In conclusion, GXBD significantly ameliorated the disorders of glycolipid metabolism in the T2DM-AMI model by regulating the chemerin/CMKLR1/PPARα signaling pathway to exert a protective effect on the damaged myocardium. This study provides a theoretical basis for further clinical study of GXBD against T2DM-AMI and is a manifestation of TCM treatment of phlegm and turbidity causing obstruction at the protein level.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Myocardial Infarction , Rats , Animals , PPAR alpha/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Rats, Sprague-Dawley , Signal Transduction , Myocardial Infarction/drug therapy , Chemokines
2.
Front Pharmacol ; 14: 1133655, 2023.
Article in English | MEDLINE | ID: mdl-36959857

ABSTRACT

A series of novel ferulic acid derivatives were designed and synthesized, and the twenty-one compounds were evaluated for their antiviral activities against Respiratory syncytial virus (RSV), herpes simplex virus type 1 (HSV-1), and enterovirus type 71 (EV71). These derivatives with the core structure of diphenyl acrylic acids had cis-trans isomers, which were confirmed by 1H NMR, HPLC, and UV-vis spectra for the first time. The A5 had a selective effect against RSV but no work on herpes simplex virus type 1 and enterovirus type 71, which showed a therapeutic index (TI) of 32 and was significantly better than ferulic acid. The A5 had no scavenging effect on free radicals, but the A2 as the degradation of A5 showed an obvious scavenging effect on DPPH· and ABTS+·. In addition, the A5 had no toxicity to endothelial cells and even showed a proliferative effect. Therefore, the A5 is worth further optimizing its structure as a lead compound and investigating the mechanism of inhibiting Respiratory syncytial virus.

3.
Aging (Albany NY) ; 14(19): 7877-7889, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36202115

ABSTRACT

This study aims to explore the role of hyperlipidemia in the mobilization of bone marrow (BM) endothelial progenitor cells (EPCs) induced by acute myocardial ischemia (AMI). To establish the hyperlipidemia complicated with AMI (HL-AMI) model, SD rats were intragastrically administered the high-fat emulsion for 4 weeks. Then their left anterior descending arteries were ligated. Rats in each group were randomly subdivided into seven subgroups. During 1st ~ 7th day following AMI modeling, rats in 1st ~ 7th subgroups were selected to be phlebotomized from their celiac artery after being anesthetized by pentobarbitone in turn. The quantity of circulating EPCs (CEPCs) was detected by flow cytometry, the expression of VEGF, eNOS, NO, MMP-9 in myocardial tissue was analyzed by western blot, and their plasma level was assayed by ELISA. Dynamic curves were plotted using these data. Within 7 days following AMI, compared with the AMI rats, in the HL-AMI rats, the myocardial infarct size, the plasma activity of CK, CK-MB, and the collagen deposition all remained at the higher levels; meanwhile, these rats showed more significant decreases in the count of CEPCs, the plasma level of VEGF etc., and their expression in myocardial tissue (P < 0.05 or P < 0.01). Our study showed that hyperlipidemia may attenuate the mobilization of BM EPCs induced by AMI via VEGF/eNOS/NO/MMP-9 signal pathway, which might partly account for hyperlipidemia hampering the repairs of AMI-induced cardiac injury.


Subject(s)
Endothelial Progenitor Cells , Hyperlipidemias , Myocardial Ischemia , Animals , Rats , Collagen , Emulsions , Endothelial Progenitor Cells/metabolism , Matrix Metalloproteinase 9/metabolism , Pentobarbital , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism
4.
Electrophoresis ; 41(16-17): 1392-1399, 2020 09.
Article in English | MEDLINE | ID: mdl-32506495

ABSTRACT

Caffeine (CA) is a common xanthine alkaloid found in tea leaves, coffee beans, and other natural plants, and is the most widely used psychotropic substance in the world. Accumulating evidence suggests that low plasma levels of CA and its metabolites may serve as reliable diagnostic markers for early Parkinson's disease (PD) patients. In this study, we demonstrated a new MEKC method for determining CA and its three main downstream metabolites, paraxanthine (PX), theobromine (TB), and theophylline (TP), in human plasma. Plasma samples were collected, and analyzed using MEKC, after SPE. The running buffer was composed of 35 mM phosphate, pH of 10.5, and 25 mM SDS. The separation voltage was 15 kV and the detection wavelength was at 210 nm. Under the optimum conditions, four distinct analytes were completely separated and detected in less than 12 min. Method limits of detection were as low as 7.5 ng/mL for CA, 5.0 ng/mL for TB, and 4.0 ng/mL for both PX and TP. The recoveries were between 88.0% and 105.9%. This method was successfully applied to 27 human plasma samples. The results indicate that the plasma concentrations of the four analytes are significantly lower in patients with early PD than in control subjects (p < 0.05). The area under curve was improved to 0.839 when CA and its three main metabolites were included, suggesting that MEKC testing of CA, TP, TB, and PX may serve as a potential method for early diagnosis of PD.


Subject(s)
Caffeine/blood , Chromatography, Micellar Electrokinetic Capillary/methods , Parkinson Disease/diagnosis , Xanthines/blood , Caffeine/metabolism , Early Diagnosis , Humans , Limit of Detection , Linear Models , Parkinson Disease/blood , Reproducibility of Results , Xanthines/metabolism
5.
Front Physiol ; 8: 1132, 2017.
Article in English | MEDLINE | ID: mdl-29387016

ABSTRACT

Trichosanthes pericarpium (TP) had been widely used to cure patients of cardiovascular disease for 2,000 years in China. This study aims to extend our previous work to explore the mechanism underlying the protective effect of TP on acute myocardial ischemia (AMI). We hypothesized that TP may display its protective effect on AMI by promoting the mobilization of endothelial progenitor cells (EPC) via up-regulating the expression level of vascular endothelial growth factor (VEGF), endothelial nitric oxide syntheses (eNOS), nitric oxide (NO), and matrix metalloproteinase 9 (MMP-9) in AMI rats. To confirm this hypothesis, we treated AMI model rats with intragastrical administration of TP aqueous extract (TPAE), and examined both changes in the number of CEPC, and the expression levels of VEGF, eNOS, NO, and MMP-9 in myocardial tissue and their plasma content in these rats. Rats in each group were randomly divided into seven subgroups. From day 1 to 7 following AMI modeling, rats in these subgroups was sequentially phlebotomized from their celiac artery after being anesthetized by chloral hydrate. We found that, compared with the AMI model rats, in rats treated by TPAE, the CEPC counts, the expression of VEGF, eNOS, NO, and MMP-9 in myocardial tissue and their plasma content all increased more rapidly 7 days after AMI and remained at higher level (P < 0.05 or P < 0.01). Our results showed that, in AMI rats, the TPAE could significantly promote the mobilization of EPC and up-regulate the expression level of VEGF, eNOS, NO, and MMP-9 in myocardium and their plasma content. Therefore, our results suggest that TAPE may regulate EPC mobilization through up-regulating the expression level of VEGF, eNOS, NO and MMP-9 in the myocardium of AMI rats.

6.
Chin Med J (Engl) ; 121(23): 2403-9, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19102957

ABSTRACT

BACKGROUND: The necrosis of a large number of myocardial cells after acute myocardial infarction (AMI) results in a decrease of cardiac function and ventricle remodeling. Stem cell transplantation could improve cardiac function after AMI, but the involving mechanisms have not been completely understood. The present study aimed to investigate the effects of transplantation of autologous bone marrow mononuclear cells (BM-MNC) and mesenchymal stem cells (MSCs) via the coronary artery on the ventricle remodeling after AMI as well as the mechanisms of the effects of transplantation of different stem cells on ventricle remodeling. METHODS: A total of 36 male pigs were enrolled in this study, which were divided into 4 groups: control group, simple infarct model group, BM-MNC transplantation group, and MSCs transplantation group. At 90 minutes when a miniature porcine model with AMI was established, transplantation of autologous BM-MNC ((4.7 +/- 1.7) x 10(7)) and MSCs ((6.2 +/- 1.6) x 10(5)) was performed in the coronary artery via a catheter. Ultrasound, electron microscope, immunohistochemical examination and real time reverse transcriptase-polymerase chain reaction were used respectively to observe cardiac functions, counts of blood vessels of cardiac muscle, cardiac muscle nuclear factor (NF)-kappaB, myocardial cell apoptosis, and the expression of the mRNA of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in cardiac muscles. Multivariate Logistic regression was used to analyze the correlation factors of left ventricular end-diastolic diameter (EDD). RESULTS: The number of blood vessels in the infarct zone and around its border in the BM-MNC transplantation group was more than those in the infarct model group and MSCs group (P = 0.0001) and there was less myocardial cell apoptosis in the stem cell transplantation group than that in the infarct model group (all P < 0.01). The positive rate of NF-kappaB in the stem cell transplantation group was lower than that in the infarct model group (P = 0.001). The gene expression of VEGF in the infarct border zone of the BM-MNC group was higher than that in the MSCs group (P = 0.0001). The gene expression of bFGF in the infarct border zone in the MSCs transplantation group was higher than that in the infarct model group and the BM-MNC group (P = 0.0001). Left ventricular ejection fraction was inversely proportional to the apoptotic rate of myocardial cells and cardiac muscle NF-kappaB but positively correlated with the number of blood vessels and the expression of VEGF and bFGF in the infarct zone and infarct border zone. The Multivariate Logistic regression analysis on the factors influencing the left ventricular end-diastolic diameter after stem cell transplantation showed that the expression of VEGF mRNA in the cardiac muscles in the infarct zone, the number of apoptotic myocardial cells and the expression of NF-kappaB in the infarct border zone were independent factors for predicting the inhibitory effect on the dilation of left ventricular EDD after stem cell transplantation. CONCLUSIONS: Transplantation of autologous BM-MNC and MSCs in pigs can improve the condition of left ventricular remodeling and recover the cardiac functions after AMI. The improvement of cardiac functions is related to the increase of blood vessels, the increased expression of VEGF and bFGF, the reduction of myocardial cell apoptosis, and the decrease of NF-kappaB level in cardiac muscle tissues after stem cell transplantation.


Subject(s)
Bone Marrow Transplantation/methods , Stem Cell Transplantation/methods , Ventricular Remodeling , Animals , Disease Models, Animal , Heart Function Tests , Male , Myocardial Infarction/physiopathology , Myocardial Infarction/surgery , Swine , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...