Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Arq Bras Cardiol ; 118(6): 1134-1140, 2022.
Article in English, Portuguese | MEDLINE | ID: mdl-35703653

ABSTRACT

Atherosclerosis is the most common cause of cardiovascular disease globally, associated with a high incidence of clinical events. Accumulating evidence has elucidated that long non-coding RNAs (lncRNAs) as a novel class of transcripts with critical roles in the pathophysiological processes of atherosclerosis. In this review, we summarize the recent progress of lncRNAs in the development of atherosclerosis. We mainly describe the diverse regulatory mechanisms of lncRNAs at the transcriptional and post-transcriptional levels. This study may provide helpful insights about lncRNAs as therapeutic targets or biomarkers for atherosclerosis treatment.


A aterosclerose é a causa mais comum de doença cardiovascular em todo o mundo, ela está associada a uma alta incidência de eventos clínicos. O acúmulo de evidências elucidou que os RNAs longos não codificantes (LncRNAs) são uma nova classe de transcritos com papéis críticos nos processos fisiopatológicos da aterosclerose. Nesta revisão, resumimos o progresso recente dos LncRNAs no desenvolvimento da aterosclerose. Descrevemos principalmente os diversos mecanismos regulatórios dos LncRNAs nos níveis transcricionais e pós-transcricionais. Este estudo pode fornecer informações úteis sobre os LncRNAs como alvos terapêuticos ou biomarcadores para o tratamento da aterosclerose.


Subject(s)
Atherosclerosis , RNA, Long Noncoding , Atherosclerosis/genetics , Humans , RNA, Long Noncoding/genetics
2.
Arq. bras. cardiol ; 118(6): 1134-1140, Maio 2022. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1383694

ABSTRACT

Resumo A aterosclerose é a causa mais comum de doença cardiovascular em todo o mundo, ela está associada a uma alta incidência de eventos clínicos. O acúmulo de evidências elucidou que os RNAs longos não codificantes (LncRNAs) são uma nova classe de transcritos com papéis críticos nos processos fisiopatológicos da aterosclerose. Nesta revisão, resumimos o progresso recente dos LncRNAs no desenvolvimento da aterosclerose. Descrevemos principalmente os diversos mecanismos regulatórios dos LncRNAs nos níveis transcricionais e pós-transcricionais. Este estudo pode fornecer informações úteis sobre os LncRNAs como alvos terapêuticos ou biomarcadores para o tratamento da aterosclerose.


Abstract Atherosclerosis is the most common cause of cardiovascular disease globally, associated with a high incidence of clinical events. Accumulating evidence has elucidated that long non-coding RNAs (lncRNAs) as a novel class of transcripts with critical roles in the pathophysiological processes of atherosclerosis. In this review, we summarize the recent progress of lncRNAs in the development of atherosclerosis. We mainly describe the diverse regulatory mechanisms of lncRNAs at the transcriptional and post-transcriptional levels. This study may provide helpful insights about lncRNAs as therapeutic targets or biomarkers for atherosclerosis treatment.

3.
Endokrynol Pol ; 73(1): 81-86, 2022.
Article in English | MEDLINE | ID: mdl-35119092

ABSTRACT

INTRODUCTION: Metabolic syndrome (MetS) is a clinical syndrome with several characteristics. Steroid receptor RNA activator (SRA) is a long non-coding RNA (lncRNA), which can increase the expression of steroid receptor-dependent gene. This study aimed to explore the changes in metabolic parameters and the predictive value of the peripheral blood mononuclear cells (PBMCs) to SRA ratios as new indicators in subjects with and without MetS in southern China. MATERIAL AND METHODS: There were 81 participants (39 with MetS and 42 without MetS) in this cross-sectional study. The expression of lncRNAs in PBMCs was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The risks of SRA and PBMCs to SRA ratios contributing to the presence of MetS were estimated by univariate and multivariate logistic regression models. The area under the receiver (AUC) operating characteristic curve was employed to evaluate diagnostic accuracy. RESULTS: MetS was positively correlated with cortisol, interleukin 6 (IL-6), white blood cell to SRA ratio (WTSR), lymphocyte to SRA ratio (LTSR), monocyte to SRA ratio (MTSR), and PBMC to SRA ratio (PTSR). A receiver operating characteristic (ROC) curve analysis was performed to assess the value of LTSR (OR: 0.722; p < 0.001) for predicting MetS. The area under the curve yielded a cut-off value of 0.483, with a sensitivity of 76.9% and a specificity of 71.4% (p < 0.001). CONCLUSION: In summary, SRA in PBMCs may be an important biomarker of stress reaction and may play a role in vulnerability to MetS. Also, the lymphocyte to SRA ratio demonstrated high accuracy in the diagnosis of MetS.


Subject(s)
Metabolic Syndrome , RNA, Long Noncoding , Cross-Sectional Studies , Humans , Leukocytes/metabolism , Leukocytes, Mononuclear/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , ROC Curve
4.
Biomed Res Int ; 2020: 8159342, 2020.
Article in English | MEDLINE | ID: mdl-32382575

ABSTRACT

PURPOSE: Metabolic syndrome (MetS) is associated with chronic stress. miR-18a-5p and miR-22-3p are two miRNAs which can target the glucocorticoid receptor. This study looked at the changes in metabolic parameters and the predictive value of the peripheral blood mononuclear cells (PBMCs) to stress-associated miRNA ratios as new indicators in subjects with and without MetS in southern China. Patients and Methods. There were 81 participants (39 with MetS and 42 without MetS) in this cross-sectional study. The potential miRNAs were filtrated in the GEO database. The expression of miR-18a-5p and miR-22-3p in PBMCs was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The risk of miRNA and PBMCs to stress-associated miRNA ratios contributing to the presence of MetS was estimated by univariate and multivariate logistic regression models. The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. RESULTS: MetS was positively correlated with cortisol, IL-6, lymphocyte to miR-18a-5p ratio (LT18R), lymphocyte to miR-22-3p ratio (LT22R), monocyte to miR-18a-5p ratio (MT18R), monocyte to miR-22-3p ratio (MT22R), PBMCs to miR-18a-5p ratio (PT18R), and PBMCs to miR-22-3p ratio (PT22R) and negatively associated with the expression levels of miR-18a-5p and miR-22-3p (P < 0.05). In addition, PT18R (odds ratio: 0.894; 95% CI: 0.823-0.966; P < 0.001) and PT22R (odds ratio: 0.809; 95% CI: 0.717-0.900; P < 0.001) were independent predictors of MetS, respectively. A receiver operating characteristic (ROC) curve analysis was performed to assess the value of the PT18R-PT22R (PMR) panel (odds ratio: 0.905; 95% CI: 0.838-0.971; P < 0.001) for predicting MetS. The area under the curve yielded a cut-off value of 0.608, with sensitivity of 74.4% and specificity of 95.2% (P < 0.001). CONCLUSION: In summary, miR-18a-5p and miR-22-3p in PBMCs may be important biomarkers of stress reaction and may play a role in vulnerability to MetS. Besides, the inflammatory cells to the two miRNA ratios demonstrated high accuracy in the diagnosis of MetS.


Subject(s)
Lymphocytes/metabolism , Metabolic Syndrome/metabolism , MicroRNAs/metabolism , Monocytes/metabolism , Stress, Physiological , Adult , Female , Humans , Lymphocytes/pathology , Male , Metabolic Syndrome/pathology , Middle Aged , Monocytes/pathology
5.
Biomed Res Int ; 2018: 7372636, 2018.
Article in English | MEDLINE | ID: mdl-30648107

ABSTRACT

Metabolic syndrome (MetS), which includes several clinical components such as abdominal obesity, insulin resistance (IR), dyslipidemia, microalbuminuria, hypertension, proinflammatory state, and oxidative stress (OS), has become a global epidemic health issue contributing to a high risk of type 2 diabetes mellitus (T2DM). In recent years, microRNAs (miRNAs), used as noninvasive biomarkers for diagnosis and therapy, have aroused global interest in complex processes in health and diseases, including MetS and its components. MiRNAs can exist stably in serum, liver, skeletal muscle (SM), heart muscle, adipose tissue (AT), and ßcells, because of their ability to escape the digestion of RNase. Here we first present an overall review on recent findings of the relationship between miRNAs and several main components of MetS, such as IR, obesity, diabetes, lipid metabolism, hypertension, hyperuricemia, and stress, to illustrate the targeting proteins or relevant pathways that are involved in the progress of MetS and also help us find promising novel diagnostic and therapeutic strategies.


Subject(s)
Metabolic Syndrome/metabolism , MicroRNAs/metabolism , Animals , Biomarkers/metabolism , Disease Progression , Humans , Metabolic Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...