Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(6)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37367589

ABSTRACT

Pathogenic fungi are influenced by many biotic and abiotic factors. Among them, light is a source of information for fungi and also a stress factor that triggers multiple biological responses, including the activation of secondary metabolites, such as the production of melanin pigments. In this study, we analyzed the melanin-like production in in vitro conditions, as well as the expression of all biosynthetic and regulatory genes of the DHN-melanin pathway in the three main Monilinia species upon exposure to light conditions (white, black, blue, red, and far-red wavelengths). On the other hand, we analyzed, for the first time, the metabolism related to ROS in M. fructicola, through the production of hydrogen peroxide (H2O2) and the expression of stress-related genes under different light conditions. In general, the results indicated a clear importance of black light on melanin production and expression in M. laxa and M. fructicola, but not in M. fructigena. Regarding ROS-related metabolism in M. fructicola, blue light highlighted by inhibiting the expression of many antioxidant genes. Overall, it represents a global description of the effect of light on the regulation of two important secondary mechanisms, essential for the adaptation of the fungus to the environment and its survival.

2.
Opt Express ; 31(10): 15392-15408, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157642

ABSTRACT

Imaging at H Ly-α (121.6 nm), among other spectral lines in the short far UV (FUV), is of high interest for astrophysics, solar, and atmosphere physics, since this spectral line is ubiquitously present in space observations. However, the lack of efficient narrowband coatings has mostly prevented such observations. Present and future space observatories like GLIDE and the IR/O/UV NASA concept, among other applications, can benefit from the development of efficient narrowband coatings at Ly-α. The current state of the art of narrowband FUV coatings lacks performance and stability for coatings that peak at wavelengths shorter than ∼135 nm. We report highly reflective AlF3/LaF3 narrowband mirrors at Ly-α prepared by thermal evaporation, with, to our knowledge, the highest reflectance (over 80%) of a narrowband multilayer at such a short wavelength obtained so far. We also report a remarkable reflectance after several months of storage in different environments, including relative humidity levels above 50%. For astrophysics targets in which Ly-α may mask a close spectral line, such as in the search for biomarkers, we present the first coating in the short FUV for imaging at the OI doublet (130.4 and 135.6 nm), with the additional requirement of rejecting the intense Ly-α, which might mask the OI observations. Additionally, we present coatings with the symmetric design, aimed to observe at Ly-α, and reject the strong OI geocoronal emission, that could be of interest for atmosphere observations.

3.
J Fungi (Basel) ; 9(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36836253

ABSTRACT

Monilinia is the causal agent of brown rot in stone fruit. The three main species that cause this disease are Monilinia laxa, M. fructicola, and M. fructigena, and their infection capacity is influenced by environmental factors (i.e., light, temperature, and humidity). To tolerate stressful environmental conditions, fungi can produce secondary metabolites. Particularly, melanin-like pigments can contribute to survival in unfavorable conditions. In many fungi, this pigment is due to the accumulation of 1,8-dihydroxynaphthalene melanin (DHN). In this study, we have identified for the first time the genes involved in the DHN pathway in the three main Monilinia spp. and we have proved their capacity to synthetize melanin-like pigments, both in synthetic medium and in nectarines at three stages of brown rot development. The expression of all the biosynthetic and regulatory genes of the DHN-melanin pathway has also been determined under both in vitro and in vivo conditions. Finally, we have analyzed the role of three genes involved in fungi survival and detoxification, and we have proved that there exists a close relationship between the synthesis of these pigments and the activation of the SSP1 gene. Overall, these results deeply describe the importance of DHN-melanin in the three main species of Monilinia: M. laxa, M. fructicola, and M. fructigena.

4.
Int J Food Microbiol ; 373: 109700, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35580409

ABSTRACT

The development of brown rot in stone fruit caused by the necrotrophic fungus Monilinia spp. is influenced by many abiotic factors, such as temperature, humidity, and light. Specifically, filamentous fungi perceive light as a signal for ecophysiological and adaptive responses. We have explored how specific light wavelengths affect the in vitro development, the regulation of putative development genes and the virulence of the main species of Monilinia (M. laxa, M. fructicola and M. fructigena). After subjecting Monilinia spp. to different light wavelengths (white, black, blue, red, far-red) for 7 days, several differences in their phenotype were observed among light conditions, but also among species. These species of Monilinia exhibited a different phenotypic plasticity in response to light regarding pigmentation, growth, and specially conidiation of colonies. In this sense, we observed that the conidial production was higher in M. laxa than M. fructicola, while M. fructigena showed an inability to produce conidia under the tested conditions. Growth rate among species was significantly lower in M. fructicola under red light wavelength while among light conditions it was increased under far-red light wavelength for M. laxa and under black light for M. fructicola; in contrast, no statistical differences were observed for M. fructigena. Gene expression analysis of 13 genes involved in fungal development of Monilinia spp. revealed a significant difference among the three species of Monilinia, and especially depended on light wavelengths. Among them, a high expression of OPT1, RGS2, RGS3 and SPP1 genes was observed in M. laxa, and LTF1 and STE12 in M. fructicola under black light. In contrast, a high expression of REG1 and C6TF1 genes occurred in both M. fructicola and M. laxa subject to red and far-red light wavelength, respectively. When nectarines were artificially infected with M. laxa and M. fructicola subjected to black light, the virulence was clearly reduced, but not in M. fructigena. Overall, results presented herein demonstrate that light wavelengths are a key abiotic factor for the biology of Monilinia spp., specially modulating its capacity to form conidia, and thus, influencing its spreading and the onset of the disease on nectarines during postharvest.


Subject(s)
Ascomycota , Fruit , Adaptation, Physiological , Fruit/microbiology , Spores, Fungal , Virulence/genetics
5.
Opt Express ; 26(19): 25166-25177, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469622

ABSTRACT

Novel narrowband multilayer coatings efficient at a wavelength as short as 100 mn are presented, which pushes shortwards the existing limit of reported narrowband multilayers. Such limit had been established at ~120 nm, close to the MgF2 cutoff wavelength. The new multilayers combine layers of Al, LiF, and SiC, in an Al/LiF/SiC/LiF multilayer design (four layers, starting with the innermost layer). Among these materials, Al and LiF are deposited by evaporation and SiC by ion-beam-sputtering. In addition to a high, narrow peak close to H Lyman ß (102.6 nm), these multilayers simultaneously provide a very small reflectance at H Lyman α (121.6 nm). This combined performance is demanded in space instrumentation for astrophysics and solar physics observations among others, where imaging the sky at the important diagnostic spectral line of Lyman ß line requires rejecting the frequently much more intense background at Lyman α line. Such is the case for solar corona observations at Lyman ß, which is masked by the strong Lyman α line. The multilayer peak is placed close to another important diagnostic tool: the OVI doublet at 103.2 and 103.8 nm. The target of small reflectance at 121.6 nm was seen to be the most critical. The best strategy in multilayer preparation was to prepare it with such minimum reflectance at slightly shorter wavelengths so that the coating evolved to shift it longwards over time. Multilayers kept a remarkable 102.6 nm/121.6 nm reflectance ratio over time in spite of some performance degradation. Hence, a multilayer coating aged of 4 years kept a reflectance of 43% at 102.6 nm and 0.2% at 121.6 nm.

6.
Opt Express ; 26(7): 9363-9372, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715889

ABSTRACT

Progress towards far UV (FUV) coatings with enhanced reflectance is invaluable for future space missions, such as LUVOIR. This research starts with the procedure developed to enhance MgF2-protected Al reflectance through depositing MgF2 on a heated aluminized substrate [Quijada et al., Proc. SPIE 8450, 84502H (2012)] and it establishes the optimum deposition temperature of the MgF2 protective film for Al mirrors with a reflectance as high as ~90% at 121.6 nm. Al films were deposited at room temperature and protected with a MgF2 film deposited at various temperatures ranging from room temperature to 350°C. It has been found that mirror reflectance in the short FUV range continuously increases with MgF2 deposition temperature up to 250°C, whereas reflectance decreases at temperatures of 300°C and up. The short-FUV reflectance of mirrors deposited at 250°C only slightly decreased over time by less than 1%, compared to a larger decay for standard coatings prepared at room temperature. Al mirrors protected with MgF2 deposited at room temperature that were later annealed displayed a similar reflectance enhancement that mirrors protected at high temperatures. MgF2 and Al roughness as well as MgF2 density were analyzed by x-ray grazing incidence reflectometry. A noticeable reduction in both Al and MgF2 roughness, as well as an increase of MgF2 density, were measured for films deposited at high temperatures. On the other hand, it was found a strong correlation between the protective-layer deposition temperature (or post-deposition annealing temperature) and the pinhole open area in Al films, which could be prevented with a somewhat thicker Al film.

7.
Mol Cell Biochem ; 289(1-2): 125-36, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16820956

ABSTRACT

Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.


Subject(s)
Calcium Signaling/physiology , Myocardial Infarction/chemically induced , Oxidative Stress , Animals , Antioxidants/metabolism , Glutathione/metabolism , Isoproterenol , Lipid Peroxidation , Male , Mitochondria/metabolism , Nitric Oxide/metabolism , Rats , Rats, Wistar , Sarcoplasmic Reticulum/metabolism , Subcellular Fractions/metabolism , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...