Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35207994

ABSTRACT

The remarkable dual nature of faceted-charge patchy metal fluoride nanocrystals arises from the spontaneous selective coordination of anionic and cationic ligands on the different facets of the nanocrystals. In previous studies, the identification and origin of the charge at the patches were obtained by combining computer simulations with indirect experimental evidence. Taking a step further, we report herein the first direct real-space identification by Kelvin probe force microscopy of the predicted faceted-charge patchy behavior, allowing the image of the dual faceted-charge surfaces. High-resolution transmission electron microscopy reveals the detailed nanocrystal faceting and allows unambiguously inferring the hydrophilic or hydrophobic role of each facet from the identification of the surface atoms exposed at the respective crystallographic planes. The success of the study lies in a foresighted synthesis methodology designed to tune the nanocrystal size to be suitable for microscopy studies and demanding applications.

2.
RSC Adv ; 10(48): 28872-28878, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-35520062

ABSTRACT

A novel hybrid solvothermal approach for perovskite nanocrystal formation via accurate control of the hydrolytic process is reported. This new synthetic methodology sets a whole general route to successfully tune the sizes of high-quality BaMO3 (M = Ti4+, Zr4+, and Hf4+) perovskite nanocrystals. Purely cubic-phase nanocrystals (stable in alcohol media) were obtained using controlled water amounts, combining the well-known aqueous sol-gel process with the classic solvothermal method. Exhaustive optimizations revealed feasibility of a fast (1 hour) and reproducible synthesis with small variations in the crystal size or agglomeration parameters. The study also reveals water content as the pivotal factor to achieve this wide range of sizes through a controlled hydrolytic step. Finally, the study of the hydrolytic process made it possible to shed some light on mechanistic insights of this synthetic route.

3.
Nanoscale Adv ; 1(7): 2740-2747, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-36132724

ABSTRACT

The surface chemistry of nanoparticles is the key factor to control and predict their interactions with molecules, ions, other particles, other materials, or substrates, determining key properties such as nanoparticle stability or biocompatibility. In consequence, the development of new techniques or modification of classical techniques to characterize nanoparticle surfaces is of utmost importance. Here, a classical analysis technique, thermally evolved gas analysis - mass spectrometry (EGA-MS), is employed to obtain an image of the nanoparticle-solvent interface, unraveling the molecules present on the surface. As the use of complementary techniques is urged, the validity of EGA-MS characterization is corroborated by comparison with a previously reported surface characterization method. Previous studies were based on several experimental techniques and MD simulations using YF3 nano/supraparticles and LaF3 nanoparticles as model systems. We demonstrate the applicability of this technique in two differently sized systems and two systems composed of the same ions on their surface but with a different inorganic core (e.g. LaF3 and YF3 nanoparticles). The results described in this paper agree well with our previous results combining experimental techniques and MD simulations. EGA-MS not only revealed the ions attached to the nanoparticle surface but also shed light on their coordination (e.g. citrate attached to one or two carboxylate moieties). Thus, we show that EGA-MS is a useful and efficient technique to characterize the surface chemistry of nanoparticles and to control and predict their final properties.

4.
Angew Chem Int Ed Engl ; 57(45): 14747-14751, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30216611

ABSTRACT

A fast and single-step preparation of patchy LnF3 faceted-charge nanocrystals are described. These hexagonal faceted nanocrystals allow the spontaneous selective adsorption of cations or anions in the different faces, producing stable and well-defined patches of different charge. The mechanism for the formation of the patches and the properties of the obtained nanocrystals were characterized by a combination of experimental techniques and all-atomic molecular dynamics simulations. The spontaneous dual-charged surface as well as the luminescence effects that can be achieved by doping host-LaF3 systems make these new nanocrystals interesting both from a fundamental point of view and for a wide range of applications.

5.
Langmuir ; 34(22): 6443-6453, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29566494

ABSTRACT

Here, 15 LnF3 nanocrystals are synthesized using coprecipitation method with citrate stabilization to allow the fast, easy, and reproducible synthesis of several nanoscaled structures in water. General trends related to the behavior of LnF3 nanocrystals are highlighted due to their broad range of application in several fields (e.g., medical applications). The same nature for all Ln3+ cations is expected due to the internal role of f orbitals. However, we found that the use of different lanthanide elements is crucial in the final size, shape, assembly, and crystalline structure. In addition, the decrease of the cation size of the lanthanide series changes the behavior of these compounds, resulting in hexagonal, orthorhombic, and cubic crystalline structures. In addition, we are able to tune the cubic crystalline phase to pure orthorhombic by modifying the pH of the system using HBF4 instead of tetramethylammonium citrate. Via 11B NMR, we demonstrated the mechanism of HBF4 as fluorinating agent if an additional source of F- is not added during the synthesis. 1H NMR and IR techniques were performed to unravel the picture of the surface chemistry of the two representative metal cations (Y and La). Finally, HRTEM and SAED were performed to uncover the shape of the obtained nanocrystals and the preferential orientation of the assembled particles, giving crucial information on the involved mechanisms. This study reveals not only the dependence of the crystalline structure on the used metal and pH but also ability to achieve LnF3 assembled particles depending on the final shape and temperature.

6.
J Am Chem Soc ; 140(6): 2127-2134, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29308645

ABSTRACT

Ligand-to-surface interactions are critical factors in surface and interface chemistry to control the mechanisms governing nanostructured colloidal suspensions. In particular, molecules containing carboxylate moieties (such as citrate anions) have been extensively investigated to stabilize metal, metal oxide, and metal fluoride nanoparticles. Using YF3 nanoparticles as a model system, we show here the self-assembly of citrate-stabilized nanostructures (supraparticles) with a size tunable by temperature. Results from several experimental techniques and molecular dynamics simulations show that the self-assembly of nanoparticles into supraparticles is due to ionic bridges between different nanoparticles. These interactions were caused by cations (e.g., ammonium) strongly adsorbed onto the nanoparticle surface that also interact strongly with nonbonded citrate anions, creating ionic bridges in solution between nanoparticles. Experimentally, we observe self-assembly of nanoparticles into supraparticles at 25 and 100 °C. Interestingly, at high temperatures (100 °C), this citrate-bridge self-assembly mechanism is more efficient, giving rise to larger supraparticles. At low temperatures (5 °C), this mechanism is not observed, and nanoparticles remain stable. Molecular dynamics simulations show that the free energy of a single citrate bridge between nanoparticles in solution is much larger than the thermal energy and in fact is much larger than typical adsorption free energies of ions on colloids. Summarizing our experiments and simulations, we identify as key aspects of the self-assembly mechanism the requirement of NPs with a surface able to adsorb anions and cations and the presence of multidentate ions in solution. This indicates that this new ion-mediated self-assembly mechanism is not specific of YF3 and citrate anions, as supported by preliminary experimental results in other systems.

7.
Acta Crystallogr C ; 58(Pt 2): m133-4, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11828104

ABSTRACT

In the title compound, [Rh(2)(C(8)H(15)N(3))(2)(C(8)H(12))(2)]Cl(2).CH(2)Cl(2).CH(3)OH, the dinuclear Rh(I) complex has C(2) symmetry and the two pyrazolato ligands act as mu-bridges. The coordination of each Rh(I) cation is completed by one cyclooctadiene (COD) ligand. It is shown that the average Rh-C(COD) distance is linearly dependent on the Rh-N(pyrazole) distance in this type of compound, and this is ascribed to the steric hindrance produced by the packing.

SELECTION OF CITATIONS
SEARCH DETAIL
...