Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242981

ABSTRACT

In biology and medicine, intrinsically disordered synthetic polymers bio-mimicking intrinsically disordered proteins, which lack stable three-dimensional structures, possess high structural/conformational flexibility. They are prone to self-organization and can be extremely useful in various biomedical applications. Among such applications, intrinsically disordered synthetic polymers can have potential usage in drug delivery, organ transplantation, artificial organ design, and immune compatibility. The designing of new syntheses and characterization mechanisms is currently required to provide the lacking intrinsically disordered synthetic polymers for biomedical applications bio-mimicked using intrinsically disordered proteins. Here, we present our strategies for designing intrinsically disordered synthetic polymers for biomedical applications based on bio-mimicking intrinsically disordered proteins.

2.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772065

ABSTRACT

Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically disordered proteins. Bio-inspired intrinsically disordered smart and soft polymers designed using our deep understanding of intrinsically disordered proteins have the potential to open new avenues in soft robotics. Together with other desirable traits, such as robustness, dynamic self-organization, and self-healing abilities, these systems possess ideal characteristics that human-made formations strive for but often fail to achieve. Our main aim is to develop materials for soft robotics applications bio-inspired by intrinsically disordered proteins to address what we see as the largest current barriers in the practical deployment of future soft robotics in various areas, including defense. Much of the current literature has focused on the de novo synthesis of tailor-made polymers to perform specific functions. With bio-inspired polymers, the complexity of protein folding mechanisms has limited the ability of researchers to reliably engineer specific structures. Unlike existing studies, our work is focused on utilizing the high flexibility of intrinsically disordered proteins and their self-organization characteristics using synthetic quasi-foldamers.

3.
J Biomed Mater Res A ; 111(2): 209-223, 2023 02.
Article in English | MEDLINE | ID: mdl-36213938

ABSTRACT

Layered double hydroxides (LDHs) offer unique source of inspiration for design of bone mimetic biomaterials due to their superior mechanical properties, drug delivery capability and regulation cellular behaviors, particularly by divalent metal cations in their structure. Three-dimensional (3D) bioprinting of LDHs holds great promise as a novel strategy thanks to highly tunable physiochemical properties and shear-thinning ability of LDHs, which allow shape fidelity after deposition. Herein, we introduce a straightforward strategy for extrusion bioprinting of cell laden nanocomposite hydrogel bioink of gelatin methacryloyl (GelMA) biopolymer and LDHs nanoparticles. First, we synthesized LDHs by co-precipitation process and systematically examined the effect of LDHs addition on printing parameters such as printing pressure, extrusion rate, printing speed, and finally bioink printability in creating grid-like constructs. The developed hydrogel bioinks provided precise control over extrudability, extrusion uniformity, and structural integrity after deposition. Based on the printability and rheological analysis, the printability could be altered by controlling the concentration of LDHs, and printability was found to be ideal with the addition of 3 wt % LDHs. The addition of LDHs resulted in remarkably enhanced compressive strength from 652 kPa (G-LDH0) to 1168 kPa (G-LDH3). It was shown that the printed nanocomposite hydrogel scaffolds were able to support encapsulated osteoblast survival, spreading, and proliferation in the absence of any osteoinductive factors taking advantage of LDHs. In addition, cells encapsulated in G-LDH3 had a larger cell spreading area and higher cell aspect ratio than those encapsulated in G-LDH0. Altogether, the results demonstrated that the developed GelMA/LDHs nanocomposite hydrogel bioink revealed a high potential for extrusion bioprinting with high structural fidelity to fabricate implantable 3D hydrogel constructs for repair of bone defects.


Subject(s)
Nanogels
4.
J Mater Chem B ; 10(15): 2912-2925, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35297911

ABSTRACT

Corneal defects are associated with corneal tissue engineering in terms of vision loss. The treatment of corneal defects is an important clinical challenge due to a uniform corneal thickness and the apparent lack of regenerative ability. In this work, we synthesized a biocompatible and photocrosslinkable ocular tissue adhesive composite hydrogel prepared by using methacrylated gelatin (GelMA), which is called the most favorable derivative of gelatin used as a tissue adhesive, silk fibroin (SF), and GelMA/SF (GS) with high adhesion behaviours for use in corneal injuries. The adhesion behaviours of the materials prepared in the presence of silk fibroin were improved. Importantly, the effect of different UV curing times on the adhesion properties of the prepared materials was also investigated. The prepared GS tissue adhesives showed high physiological adhesion. GS can be modulated to increase its adhesive strength up to 3 times compared to G. GS was also found to be biocompatible and have a high healing potential. In addition, the obtained transmission value of GS is also close to that of the human cornea. GS supported cellular adhesion and proliferation. The burst pressure strength for fresh cornea of the GS-60s sealants (144.5 ± 13 kPa) was determined to be higher than that of the G-60s sealants (52.6 ± 33.5 kPa).


Subject(s)
Corneal Perforation , Fibroins , Tissue Adhesives , Adhesives , Fibroins/pharmacology , Gelatin/pharmacology , Humans , Tissue Adhesives/pharmacology , Tissue Adhesives/therapeutic use , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...