Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2672: 265-284, 2023.
Article in English | MEDLINE | ID: mdl-37335483

ABSTRACT

Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) sequences provides excellent chromosome markers for comparative cytogenetic analyses, especially in non-model plant species. The tandem repeat nature of a sequence and the presence of a highly conserved genic region make rDNA sequences relatively easy to isolate and clone. In this chapter, we describe the use of rDNA as markers for comparative cytogenetics studies. Traditionally, cloned probes labeled with Nick-translation have been used to detect rDNA loci. Recently, pre-labeled oligonucleotides are also employed quite frequently to detect both 35S and 5S rDNA loci. Ribosomal DNA sequences, together with other DNA probes in FISH/GISH or with fluorochromes such as CMA3 banding or silver staining, are very useful tools in comparative analyses of plant karyotypes.


Subject(s)
RNA, Ribosomal , DNA, Ribosomal/genetics , In Situ Hybridization, Fluorescence , Cytogenetics , Karyotyping , Karyotype , RNA, Ribosomal/genetics
2.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232345

ABSTRACT

The evolution of chromosome number and ribosomal DNA (rDNA) loci number and localisation were studied in Onobrychis Mill. Diploid and tetraploid species, as well as two basic chromosome numbers, x = 7 and x = 8, were observed among analysed taxa. The chromosomal distribution of rDNA loci was presented here for the first time using fluorescence in situ hybridisation (FISH) with 5S and 35S rDNA probes. Onobrychis species showed a high polymorphism in the number and localisation of rDNA loci among diploids, whereas the rDNA loci pattern was very similar in polyploids. Phylogenetic relationships among the species, inferred from nrITS sequences, were used as a framework to reconstruct the patterns of basic chromosome number and rDNA loci evolution. Analysis of the evolution of the basic chromosome numbers allowed the inference of x = 8 as the ancestral number and the descending dysploidy and polyploidisation as the major mechanisms of the chromosome number evolution. Analyses of chromosomal patterns of rRNA gene loci in a phylogenetic context resulted in the reconstruction of one locus of 5S rDNA and one locus of 35S rDNA in the interstitial chromosomal position as the ancestral state in this genus.


Subject(s)
Chromosomes, Plant , Fabaceae , Chromosomes, Plant/genetics , DNA, Plant/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Fabaceae/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...