Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.698
Filter
1.
Neural Regen Res ; 20(1): 29-40, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767474

ABSTRACT

The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis. Microglia, as innate immune cells, play important roles in the maintenance of central nervous system homeostasis, injury response, and neurodegenerative diseases. Lactate has been considered a metabolic waste product, but recent studies are revealing ever more of the physiological functions of lactate. Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions, macrophage polarization, neuromodulation, and angiogenesis and has also been implicated in the development of various diseases. This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation, histone versus non-histone lactylation, and therapeutic approaches targeting lactate. Finally, we summarize the current research on microglia lactylation in central nervous system diseases. A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.

2.
Apoptosis ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39068624

ABSTRACT

The occurrence of acute kidney injury (AKI) is elevated, one of the main causes is ischemia-reperfusion (I/R). However, no specific therapy is currently available to treat I/R-induced AKI (I/R-AKI). Treg cells have been demonstrated to perform an anti-inflammatory role in a range of autoimmune and inflammatory illnesses. However, there is limited available information about the possible functions of CD8 + CD103 + iTregs in I/R-AKI. We utilized renal tubular epithelial cells (RTECs) subjected to hypoxia-reoxygenation (H/R) and I/R-AKI mouse model to investigate whether CD8 + CD103 + iTregs could attenuate AKI and the underlying mechanism. In vitro, co-cultured with CD8 + CD103 + iTregs alleviated H/R-induced cell injury. After treatment of CD8 + CD103 + iTregs rather than control cells, a significant improvement of I/R-AKI was observed in vivo, including decreased serum creatinine (sCr) and blood urea nitrogen (BUN) levels, reduced renal pathological injury, lowered tubular apoptosis and inhibition of the transition from AKI to chronic kidney disease (CKD). Mechanically, CD8 + CD103 + iTregs alleviated H/R-induced cell injury and I/R-AKI partly by suppressing RTECs pyroptosis via inhibiting the NLRP3/Caspase-1 axis. Our study provides a novel perspective on the possibility of CD8 + CD103 + iTregs for the treatment of I/R-AKI.

3.
Exp Ther Med ; 28(3): 353, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39071913

ABSTRACT

The present study aimed to determine the optimal posterior tibial plateau inclination for fixed-platform unicondylar knee arthroplasty (UKA) using finite element analysis (FEA). These findings provided a theoretical basis for selecting an appropriate posterior inclination of the tibial plateau during surgery. The present study utilized the FEA method to create models of fixed-platform UKA with tibial plateau posterior inclinations of 3, 6 and 9˚. The stress changes in the internal structures of each model after knee flexion motion were then compared. During knee flexion from 0 to 90˚, the contact and Von Mises equivalent stresses of the femoral condyle prosthesis and tibial platform pad revealed consistent trends of 3˚ posterior inclination, >6˚ posterior inclination and >9˚ posterior inclination. The present study established the first quasi-dynamic fixed-platform UKA model of the knee joint under load-bearing conditions. From a theoretical perspective, it was found that controlling the posterior inclination of UKA between 6 and 9˚ may be more beneficial for the survival of the tibial platform pad than between 3 and 6˚. It is also more effective in reducing pad wear.

4.
World J Gastrointest Oncol ; 16(7): 3193-3210, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072160

ABSTRACT

BACKGROUND: Esophageal carcinoma (EC) is one of the most prevalent cancers in human populations worldwide. Baitouweng decoction is one of the most important Chinese medicine formulas, with the potential to treat cancer. AIM: To investigate the role and mechanism of Baitouweng decoction on EC cells. METHODS: Differentially expressed genes (DEGs) in EC tissues and normal tissues were screened by the cDNA microarray technique and by bioinformatics methods. The target genes of microRNAs were predicted based on the TargetScan database and verified by dual luciferase gene reporter assay. We used Baitouweng decoction to intervene EC cells, and detected the activity of EC9706 and KYSE150 cells by the MTT method. Cell cycle and apoptosis were measured by flow cytometry. The expression of BUB1 mRNA and miR-495-3p was measured by qRT-PCR. The protein levels of BUB1, STAT3, p-STAT3, CCNB1, CDK1, Bax, Caspase3, and Caspase9 were measured by Western blot analysis. The migration and invasion abilities of the cells were measured by wound-healing assay and Transwell invasion assay, respectively. RESULTS: DEGs identified are involved in biological processes, signaling pathways, and network construction, which are mainly related to mitosis. BUB1 was the key hub gene, and it is also a target gene of miR-495-3p. Baitouweng decoction could upregulate miR-495-3p and inhibit BUB1 expression. In vitro experiments showed that Baitouweng decoction significantly inhibited the migration and invasion of EC cells and induced apoptosis and G2/M phase arrest. After treatment with Baitouweng decoction, the expression of Bax, Caspase 3, and Caspase 9 in EC cells increased significantly, while the expression of BUB1, CCNB1, and CDK1 decreased significantly. Moreover, the STAT3 signaling pathway may play an important role in this process. CONCLUSION: Baitouweng decoction has a significant inhibitory effect on EC cell growth. BUB1 is a potential therapeutic target for EC. Further analysis showed that Baitouweng decoction may inhibit the growth of EC cells by upregulating miR-495-3p targeting the BUB1-mediated STAT3 signal pathway.

5.
EBioMedicine ; 106: 105260, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067134

ABSTRACT

BACKGROUND: Deeper insights into ERBB2-driven cancers are essential to develop new treatment approaches for ERBB2+ breast cancers (BCs). We employed the Collaborative Cross (CC) mouse model to unearth genetic factors underpinning Erbb2-driven mammary tumour development and metastasis. METHODS: 732 F1 hybrid female mice between FVB/N MMTV-Erbb2 and 30 CC strains were monitored for mammary tumour phenotypes. GWAS pinpointed SNPs that influence various tumour phenotypes. Multivariate analyses and models were used to construct the polygenic score and to develop a mouse tumour susceptibility gene signature (mTSGS), where the corresponding human ortholog was identified and designated as hTSGS. The importance and clinical value of hTSGS in human BC was evaluated using public datasets, encompassing TCGA, METABRIC, GSE96058, and I-SPY2 cohorts. The predictive power of mTSGS for response to chemotherapy was validated in vivo using genetically diverse MMTV-Erbb2 mice. FINDINGS: Distinct variances in tumour onset, multiplicity, and metastatic patterns were observed in F1-hybrid female mice between FVB/N MMTV-Erbb2 and 30 CC strains. Besides lung metastasis, liver and kidney metastases emerged in specific CC strains. GWAS identified specific SNPs significantly associated with tumour onset, multiplicity, lung metastasis, and liver metastasis. Multivariate analyses flagged SNPs in 20 genes (Stx6, Ramp1, Traf3ip1, Nckap5, Pfkfb2, Trmt1l, Rprd1b, Rer1, Sepsecs, Rhobtb1, Tsen15, Abcc3, Arid5b, Tnr, Dock2, Tti1, Fam81a, Oxr1, Plxna2, and Tbc1d31) independently tied to various tumour characteristics, designated as a mTSGS. hTSGS scores (hTSGSS) based on their transcriptional level showed prognostic values, superseding clinical factors and PAM50 subtype across multiple human BC cohorts, and predicted pathological complete response independent of and superior to MammaPrint score in I-SPY2 study. The power of mTSGS score for predicting chemotherapy response was further validated in an in vivo mouse MMTV-Erbb2 model, showing that, like findings in human patients, mouse tumours with low mTSGS scores were most likely to respond to treatment. INTERPRETATION: Our investigation has unveiled many new genes predisposing individuals to ERBB2-driven cancer. Translational findings indicate that hTSGS holds promise as a biomarker for refining treatment strategies for patients with BC. FUNDING: The U.S. Department of Defense (DoD) Breast Cancer Research Program (BCRP) (BC190820), United States; MCIN/AEI/10.13039/501100011039 (PID2020-118527RB-I00, PDC2021-121735-I00), the "European Union Next Generation EU/PRTR," the Regional Government of Castile and León (CSI144P20), European Union.

6.
Cancer Res ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073320

ABSTRACT

Metastasis to the lungs is a leading cause of death for breast cancer patients. Therefore, effective therapies are urgently needed to prevent and treat breast cancer lung metastasis In this study, we uncovered a mechanism by which NAD(P)H:quinone oxidoreductase 1 (NQO1) orchestrates lung metastasis. NQO1 stabilized and upregulated peptidyl-prolyl cis-trans isomerase A (PPIA), a chaperone that regulates protein conformation and activity, by preventing its oxidation at a critical cysteine residue C161. PPIA subsequently activated CD147, a membrane protein that facilitates cell invasion. Moreover, NQO1-induced secretion of PPIA modulated the immune landscape of both primary and lung metastatic sites. Secreted PPIA engaged CD147 on neutrophils and triggered the release of neutrophil extracellular traps (NET) and neutrophil elastase, which enhanced tumor progression, invasiveness and lung colonization. Pharmacological targeting of PPIA effectively inhibited NQO1-mediated breast cancer lung metastasis. These findings reveal a previously unrecognized NQO1-PPIA-CD147-NET axis that drives breast cancer lung metastasis. Inhibiting this axis is a potential therapeutic strategy to limit lung metastasis in breast cancer patients.

7.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062956

ABSTRACT

Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.


Subject(s)
Drug Delivery Systems , Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Drug Delivery Systems/methods , Animals , Drug Carriers/chemistry , Neoplasms/therapy
8.
Plants (Basel) ; 13(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39065452

ABSTRACT

Some citrus orchards in China often experience nitrogen (N) deficiency. For the first time, targeted metabolomics was used to examine N-deficient effects on hormones in sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) leaves and roots. The purpose was to validate the hypothesis that hormones play a role in N deficiency tolerance by regulating root/shoot dry weight ratio (R/S), root system architecture (RSA), and leaf and root senescence. N deficiency-induced decreases in gibberellins and indole-3-acetic acid (IAA) levels and increases in cis(+)-12-oxophytodienoic acid (OPDA) levels, ethylene production, and salicylic acid (SA) biosynthesis might contribute to reduced growth and accelerated senescence in leaves. The increased ethylene formation in N-deficient leaves might be caused by increased 1-aminocyclopropanecarboxylic acid and OPDA and decreased abscisic acid (ABA). N deficiency increased R/S, altered RSA, and delayed root senescence by lowering cytokinins, jasmonic acid, OPDA, and ABA levels and ethylene and SA biosynthesis, increasing 5-deoxystrigol levels, and maintaining IAA and gibberellin homeostasis. The unchanged IAA concentration in N-deficient roots involved increased leaf-to-root IAA transport. The different responses of leaf and root hormones to N deficiency might be involved in the regulation of R/S, RSA, and leaf and root senescence, thus improving N use efficiency, N remobilization efficiency, and the ability to acquire N, and hence conferring N deficiency tolerance.

9.
Exp Gerontol ; 194: 112515, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972493

ABSTRACT

OBJECTIVE: Cognitive decline represents a critical clinical and public health issue that adversely affects the quality of life for older patients and their families. This concern was exacerbated by the reduced engagement in outdoor activities among seniors during the COVID-19 pandemic, presenting substantial challenges to aging societies. The objective of this study was to investigate the impact of health qigong combined with Tibetan dance on working memory in middle-aged and elderly women, and to determine its potential as a preventive strategy against cognitive disorders. METHODS: A pilot study was conducted to compare the effects of a Health Qigong exercise intervention with those of everyday life and sports routines. The primary outcome measure was working memory assessed using a 2-Back working memory task research paradigm. Between July and September 2021, a total of 33 women were divided into four groups: two middle-aged groups (N = 18, with 8 women in the experimental group and 10 in the control group) and two elderly groups (N = 15, with 7 in the experimental group and 8 in the control group). Participants in the experimental groups underwent a 10-week intervention, consisting of three 60-min sessions per week. Each session included a warm-up, Health Qigong combined with Tibetan dance, and a cool-down. Throughout the study, all participants continued their daily routines. Response times and error rates were analyzed using a mixed-design repeated-measures analysis of variance. RESULTS: A simple effects analysis revealed that Health Qigong combined with Tibetan dance significantly enhanced 2-Back response time and error rate in the middle-aged group. In contrast, the 2-Back error rate significantly increased in the elderly control group that did not receive the intervention (p < 0.05). CONCLUSION: Health Qigong demonstrates beneficial effects on middle-aged and elderly women. Combining Health Qigong with dance may serve as a preventive measure against cognitive disorders. This pioneering study conducted during the COVID-19 pandemic, assesses the new possibility of Health Qigong and dance, with the objective to offer more diverse indoor exercise options for middle-aged and elderly women.


Subject(s)
COVID-19 , Memory, Short-Term , Qigong , Humans , Female , Qigong/methods , Aged , Pilot Projects , Middle Aged , COVID-19/prevention & control , Dancing , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/therapy , SARS-CoV-2 , Dance Therapy/methods , Quality of Life , Tibet
10.
Brain Behav ; 14(7): e3608, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956886

ABSTRACT

INTRODUCTION: Cerebral ischemia reperfusion injury (CIRI) often leads to deleterious complications after stroke patients receive reperfusion therapy. Exercise preconditioning (EP) has been reported to facilitate brain function recovery. We aim to explore the specific mechanism of EP in CIRI. METHODS: Sprague-Dawley rats were randomized into Sham, middle cerebral artery occlusion (MCAO), and EP groups (n = 11). The rats in the EP group received adaptive training for 3 days (10 m/min, 20 min/day, with a 0° incline) and formal training for 3 weeks (6 days/week, 25 m/min, 30 min/day, with a 0° incline). Then, rats underwent MCAO surgery to establish CIRI models. After 48 h, neurological deficits and cerebral infarction of the rats were measured. Neuronal death and apoptosis in the cerebral cortices were detected. Furthermore, RNA sequencing was conducted to investigate the specific mechanism of EP on CIRI, and qPCR and Western blotting were further applied to confirm RNA sequencing results. RESULTS: EP improved neurological deficit scores and reduced cerebral infarction in MCAO rats. Additionally, pre-ischemic exercise also alleviated neuronal death and apoptosis of the cerebral cortices in MCAO rats. Importantly, 17 differentially expressed genes (DEGs) were identified through RNA sequencing, and these DEGs were mainly enriched in the HIF-1 pathway, cellular senescence, proteoglycans in cancer, and so on. qPCR and Western blotting further confirmed that EP could suppress TIMP1, SOCS3, ANGPTL4, CDO1, and SERPINE1 expressions in MCAO rats. CONCLUSION: EP can improve CIRI in vivo, the mechanism may relate to TIMP1 expression and HIF-1 pathway, which provided novel targets for CIRI treatment.


Subject(s)
Infarction, Middle Cerebral Artery , Physical Conditioning, Animal , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/therapy , Rats , Male , Physical Conditioning, Animal/physiology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain Ischemia/therapy , Sequence Analysis, RNA , Disease Models, Animal , Apoptosis , Ischemic Preconditioning/methods
11.
Cureus ; 16(6): e61600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962589

ABSTRACT

Background Although demographic and clinical factors such as age, certain comorbidities, and sex have been associated with COVID-19 outcomes, these studies were largely conducted in urban populations affiliated with large academic medical centers. There have been very few studies focusing on rural populations that also characterize broader changes in inflammatory cytokines and chemokines. Methodology A single-center study was conducted between June 2020 and March 2021 in Abilene, Texas, USA. Patients were included if they presented to the hospital for treatment of COVID-19, had extra biological materials from routine care available, and were between the ages of 0 to 110 years. There were no exclusion criteria. Patient characteristics, symptom presentation, and clinical laboratory results were extracted from electronic health records. Blood specimens were analyzed by protein microarray to quantitate 40 immunological biomarkers. Results A total of 122 patients were enrolled, of whom 81 (66%) were admitted to the general non-critical inpatient unit, 37 (30%) were admitted to the intensive or critical care units, and four (3.2%) were treated outpatient. Most hospitalized COVID-19 patients in this rural population were elderly, male, obese, and retired individuals. Predominant symptoms for non-critical patients were shortness of breath, fever, and fatigue. Ferritin levels for outpatient patients were lower on average than those in an inpatient setting and lactate dehydrogenase (LDH) levels were noted to be lower in non-critical and outpatient than those in the intensive care unit setting. Inflammatory biomarkers were positively correlated and consistent with inflammatory cascade. Interleukin (IL)-10 was positively correlated while platelet-derived growth factor was negatively correlated with inflammatory biomarkers. Patients ≥65 years had significantly higher levels of LDH and seven cytokines/chemokines (granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin IL-1b, IL-6, IL-10, IL-11, macrophage inflammatory protein (MIP)-1d, and IL-8) while levels of five other immune molecules (intercellular adhesion molecule 1 (ICAM-1), monocyte chemoattractant protein 1 (MCP-1), tissue inhibitor of metalloproteinase 2 (TIMP-2), IL-2, and IL-4) were significantly lower compared to those <65 years. Females had significantly higher levels of LDH and 10 cytokines/chemokines (GM-CSF, IL-1b, IL-6, IL-10, IL-11, IL-15, IL-16, MIP-1a, MIP-1d, and IL-8) while levels of TIMP-2 and IL-4 were significantly lower than male patients. Conclusions The clinical characteristics of this rural cohort of hospitalized patients differed somewhat from nationally reported data. The contributions of social, environmental, and healthcare access factors should be investigated. We identified age and sex-associated differences in immunological response markers that warrant further investigation to identify the underlying molecular mechanisms and impact on COVID-19 pathogenesis.

12.
Food Chem ; 458: 140266, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964095

ABSTRACT

The interaction between proteins and soluble dietary fibers plays a vital role in the development of animal-derived foods. Herein, the effects of different contents (0-3.0%) of round-bracted psyllium husk powder (PHP) on the gelation behavior, microstructure, and intermolecular interactions of Andrias davidianus myofibrillar protein (MP) were investigated. Rheological and chemical forces suggested that PHP (1.5%-2.0%) enhanced the functional properties of MP at low ionic strength, thereby increasing the viscoelasticity of mixed gels. SDS-PAGE revealed that PHP reinforced the cross-linking and aggregation of protein molecules. Circular dichroism spectroscopy, low-field nuclear magnetic resonance, and scanning electron microscopy demonstrated that PHP induced the transformation of α-helix (decreased by 14.85%) to an ordered ß-sheet structure (increased by 81.58%), which was more favorable for the formation of dense network structure and improved (10.53%) the water retention of MP gels. This study provided new insights for PHP to effectively meliorate the heat-induced gelling properties of MP.

13.
Foodborne Pathog Dis ; 21(7): 447-457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985570

ABSTRACT

Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 µg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 µg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 µg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 µg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.


Subject(s)
Acyclic Monoterpenes , Bacillus cereus , Biofilms , Acyclic Monoterpenes/pharmacology , Anti-Infective Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Bacillus cereus/ultrastructure , Spores, Bacterial/drug effects , Biofilms/drug effects , Microbial Sensitivity Tests , Oryza/microbiology , Membrane Potentials/drug effects , Intracellular Space/enzymology , Adenosine Triphosphate/metabolism , Reactive Oxygen Species/metabolism , Microscopy, Electron, Scanning , Food Microbiology
14.
Heliyon ; 10(12): e32848, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988568

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent primary liver carcinoma. Guanine nucleotide-binding protein, α-activating activity polypeptide O (GNAO1) was reported to be under-expressed in HCC tissues. This study aimed to investigate the GNAO1-derived circular RNA (circRNA) and its molecular mechanisms in HCC. Methods: Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were applied to examine RNA and protein levels. Functional experiments were performed to study HCC cell proliferation, cell cycle and cellular senescence. The interactions among circGNAO1, GNAO1 and DNA methyltransferase 1 (DNMT1) were examined by mechanism assays. The methylation level was analyzed by bisulfite sequencing PCR (BSP). Results: CircGNAO1 is down-regulated and positively associated with GNAO1 in HCC tissues. Overexpression of circGNAO1 inhibits cell proliferation, induces cell cycle arrest and facilitates cell senescence in HCC cells. CircGNAO1 facilitates the progression of HCC via modulating GNAO1. Mechanistically, circGNAO1 enhances the transcription of GNAO1 by sequestering DNMT1, thereby up-regulating GNAO1 expression in HCC cells. Conclusions: CircGNAO1 up-regulates its host gene GNAO1 expression for suppression of hepatocarcinogenesis.

15.
Cell Prolif ; : e13715, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982593

ABSTRACT

The bone marrow (BM) niches are the complex microenvironments that surround cells, providing various external stimuli to regulate a range of haematopoietic stem cell (HSC) behaviours. Recently, it has been proposed that the fate decision of HSCs is often correlated with significantly altered biophysical signals of BM niches. To thoroughly elucidate the effect of mechanical microenvironments on cell fates, we constructed 2D and 3D cell culture hydrogels using polyacrylamide to replicate the mechanical properties of heterogeneous sub-niches, including the inherent rigidity of marrow adipose tissue (2 kPa), perivascular tissue (8 kPa) and endosteum region (35 kPa) in BM. Our observations suggest that HSCs can respond to the mechanical heterogeneity of the BM microenvironment, exhibiting diversity in cell mechanics, haematopoietic pool maintenance and differentiated lineages. Hydrogels with higher stiffness promote the preservation of long-term repopulating HSCs (LT-HSCs), while those with lower stiffness support multi-potent progenitors (MPPs) viability in vitro. Furthermore, we established a comprehensive transcriptional profile of haematopoietic subpopulations to reflect the multipotency of haematopoietic stem and progenitor cells (HSPCs) that are modulated by niche-like stiffness. Our findings demonstrate that HSPCs exhibit completely distinct downstream differentiated preferences within hydrogel systems of varying stiffness. This highlights the crucial role of tissue-specific mechanical properties in HSC lineage decisions, which may provide innovative solutions to clinical challenges.

16.
Glob Chang Biol ; 30(7): e17406, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982862

ABSTRACT

Temperature extremes exert a significant influence on terrestrial ecosystems, but the precise levels at which these extremes trigger adverse shifts in vegetation productivity have remained elusive. In this study, we have derived two critical thresholds, using standard deviations (SDs) of growing-season temperature and satellite-based vegetation productivity as key indicators. Our findings reveal that, on average, vegetation productivity experiences rapid suppression when confronted with temperature anomalies exceeding 1.45 SD above the mean temperature during 2001-2018. Furthermore, at temperatures exceeding 2.98 SD above the mean, we observe the maximum level of suppression, particularly in response to the most extreme high-temperature events. When Earth System Models are driven by a future medium emission scenario, they project that mean temperatures will routinely surpass both of these critical thresholds by approximately the years 2050 and 2070, respectively. However, it is important to note that the timing of these threshold crossings exhibits spatial variation and will appear much earlier in tropical regions. Our finding highlights that restricting global warming to just 1.5°C can increase safe areas for vegetation growth by 13% compared to allowing warming to reach 2°C above preindustrial levels. This mitigation strategy helps avoid exposure to detrimental extreme temperatures that breach these thresholds. Our study underscores the pivotal role of climate mitigation policies in fostering the sustainable development of terrestrial ecosystems in a warming world.


Subject(s)
Global Warming , Ecosystem , Plant Development , Temperature , Seasons , Hot Temperature , Climate Models , Plants , Climate Change
17.
Aquat Toxicol ; 273: 107015, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38996482

ABSTRACT

Nitrite, a highly toxic environmental contaminant, induces various physiological toxicities in aquatic animals. Herein, we investigate the in vivo effects of nitrite exposure at concentrations of 0, 0.2, 2, and 20 mg/L on glucose and lipid metabolism in zebrafish. Our results showed that exposure to nitrite induced mitochondrial oxidative stress in zebrafish liver and ZFL cells, which were evidenced by increased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) as well as decreased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP). Changes in these oxidative stress markers were accompanied by alterations in the expression levels of genes involved in HIF-1α pathway (hif1α and phd), which subsequently led to the upregulation of glycolysis and gluconeogenesis-related genes (gk, pklr, pdk1, pepck, g6pca, ppp1r3cb, pgm1, gys1 and gys2), resulting in disrupted glucose metabolism. Moreover, nitrite exposure activated ERs (Endoplasmic Reticulum stress) responses through upregulating of genes (atf6, ern1 and xbp1s), leading to increased expression of lipolysis genes (pparα, cpt1aa and atgl) and decreased expression of lipid synthesis genes (srebf1, srebf2, fasn, acaca, scd, hmgcra and hmgcs1). These results were also in consistent with the observed changes in glycogen, lactate and decreased total triglyceride (TG) and total cholesterol (TC) in the liver of zebrafish. Our in vitro results showed that co-treatment with Mito-TEMPO and nitrite attenuated nitrite-induced oxidative stress and improved mitochondrial function, which were indicated by the restorations of ROS, MMP, ATP production, and glucose-related gene expression recovered. Co-treatment of TUDCA and nitrite prevented nitrite-induced ERs response and which was proved by the levels of TG and TC ameliorated as well as the expression levels of lipid metabolism-related genes. In conclusion, our study suggested that nitrite exposure disrupted hepatic glucose and lipid metabolism through mitochondrial dysfunction and ERs responses. These findings contribute to the understanding of the potential hepatotoxicity for aquatic animals in the presence of ambient nitrite.

18.
Neurosci Bull ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980648

ABSTRACT

The nucleus accumbens (NAc) plays an important role in various emotional and motivational behaviors that rely on heightened wakefulness. However, the neural mechanisms underlying the relationship between arousal and emotion regulation in NAc remain unclear. Here, we investigated the roles of a specific subset of inhibitory corticotropin-releasing hormone neurons in the NAc (NAcCRH) in regulating arousal and emotional behaviors in mice. We found an increased activity of NAcCRH neurons during wakefulness and rewarding stimulation. Activation of NAcCRH neurons converts NREM or REM sleep to wakefulness, while inhibition of these neurons attenuates wakefulness. Remarkably, activation of NAcCRH neurons induces a place preference response (PPR) and decreased basal anxiety level, whereas their inactivation induces a place aversion response and anxious state. NAcCRH neurons are identified as the major NAc projection neurons to the bed nucleus of the stria terminalis (BNST). Furthermore, activation of the NAcCRH-BNST pathway similarly induced wakefulness and positive emotional behaviors. Taken together, we identified a basal forebrain CRH pathway that promotes the arousal associated with positive affective states.

19.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973083

ABSTRACT

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

20.
Commun Biol ; 7(1): 824, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971948

ABSTRACT

The expression dysregulation of microRNAs (miRNA) has been widely reported during cancer development, however, the underling mechanism remains largely unanswered. In the present work, we performed a systematic integrative study for genome-wide DNA methylation, copy number variation and miRNA expression data to identify mechanisms underlying miRNA dysregulation in lower grade glioma. We identify 719 miRNAs whose expression was associated with alterations of copy number variation or promoter methylation. Integrative multi-omics analysis revealed four subtypes with differing prognoses. These glioma subtypes exhibited distinct immune-related characteristics as well as clinical and genetic features. By construction of a miRNA regulatory network, we identified candidate miRNAs associated with immune evasion and response to immunotherapy. Finally, eight prognosis related miRNAs were validated to promote cell migration, invasion and proliferation through in vitro experiments. Our study reveals the crosstalk among DNA methylation, copy number variation and miRNA expression for immune regulation in glioma, and could have important implications for patient stratification and development of biomarkers for immunotherapy approaches.


Subject(s)
Brain Neoplasms , DNA Copy Number Variations , DNA Methylation , Gene Expression Regulation, Neoplastic , Glioma , MicroRNAs , Humans , Glioma/genetics , Glioma/immunology , Glioma/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Epigenomics , Genomics , Gene Regulatory Networks , Cell Line, Tumor , Immune Evasion/genetics , Epigenesis, Genetic , Female , Male , Prognosis , Neoplasm Grading
SELECTION OF CITATIONS
SEARCH DETAIL
...