Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Med Phys ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967477

ABSTRACT

BACKGROUND: Intensity-modulated proton therapy (IMPT) optimizes spot intensities and position, providing better conformability. However, the successful application of IMPT is dependent upon addressing the challenges posed by range and setup uncertainties. In order to address the uncertainties in IMPT, robust optimization is essential. PURPOSE: This study aims to develop a novel fast algorithm for robust optimization of IMPT with minimum monitor unit (MU) constraint. METHODS AND MATERIALS: The study formulates a robust optimization problem and proposes a novel, fast algorithm based on the alternating direction method of multipliers (ADMM) framework. This algorithm enables distributed computation and parallel processing. Ten clinical cases were used as test scenarios to evaluate the performance of the proposed approach. The robust optimization method (RBO-NEW) was compared with plans that only consider nominal optimization using CTV (NMO-CTV) without handling uncertainties and PTV (NMO-PTV) to handle the uncertainties, as well as with conventional robust-optimized plans (RBO-CONV). Dosimetric metrics, including D95, homogeneity index, and Dmean, were used to evaluate the dose distribution quality. The area under the root-mean-square dose (RMSD)-volume histogram curves (AUC) and dose-volume histogram (DVH) bands were used to evaluate the robustness of the treatment plan. Optimization time cost was also assessed to measure computational efficiency. RESULTS: The results demonstrated that the RBO plans exhibited better plan quality and robustness than the NMO plans, with RBO-NEW showing superior computational efficiency and plan quality compared to RBO-CONV. Specifically, statistical analysis results indicated that RBO-NEW was able to reduce the computational time from 389.70 ± 207.40 $389.70\pm 207.40$ to 228.60 ± 123.67 $228.60\pm 123.67$ s ( p < 0.01 $p<0.01$ ) and reduce the mean organ-at-risk (OAR) dose from 9.38 ± 12.80 $9.38\pm 12.80$ % of the prescription dose to 9.07 ± 12.39 $9.07\pm 12.39$ % of the prescription dose ( p < 0.05 $p<0.05$ ) compared to RBO-CONV. CONCLUSION: This study introduces a novel fast robust optimization algorithm for IMPT treatment planning with minimum MU constraint. Such an algorithm is not only able to enhance the plan's robustness and computational efficiency without compromising OAR sparing but also able to improve treatment plan quality and reliability.

2.
Med Phys ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031641

ABSTRACT

BACKGROUNDS: When comparing the delivery of all beams per fraction (ABPF) to single beam per fraction (SBPF), it is observed that SBPF not only helps meet the FLASH dose threshold but also mitigates the uncertainty with beam switching in the FLASH effect. However, SBPF might lead to a higher biological equivalent dose in 2 Gy (EQD2) for normal tissues. PURPOSE: This study aims to develop an EQD2-based integrated optimization framework (EQD2-IOF), encompassing robust dose, delivery efficiency, and beam orientation optimization (BOO) for Bragg peak FLASH plans using the SBPF treatment schedule. The EQD2-IOF aims to enhance both dose sparing and the FLASH effect. METHODS: A superconducting gantry was employed for fast energy switching within 27 ms, while universal range shifters were utilized to improve beam current in the implementation of FLASH plans with five Bragg peak beams. To enhance dose delivery efficiency while maintaining plan quality, a simultaneous dose and spot map optimization (SDSMO) algorithm for single field optimization was incorporated into a Bayesian optimization-based auto-planning algorithm. Subsequently, a BOO algorithm based on Tabu search was developed to select beam angle combinations (BACs) for 10 lung cases. To simultaneously consider dose sparing and FLASH effect, a quantitative model based on dose-dependent dose modification factor (DMF) was used to calculate FLASH-enhanced dose distribution. The EQD2-IOF plan was compared to the plan optimized without SDSMO using BAC selected by a medical physicist (Manual plan) in the SBPF treatment schedule. Meanwhile, the mean EQD2 in the normal tissue was evaluated for the EQD2-IOF plan in both SBPF and ABPF treatment schedules. RESULTS: No significant difference was found in D2% and D98% of the target between EQD2-IOF plans and Manual Plans. When using a minimum DMF of 0.67 and a dose threshold of 4 Gy, EQD2-IOF plans showed a significant reduction in FLASH-enhanced EQD2mean of the ipsilateral lung and normal tissue by 10.5% and 11.5%, respectively, compared to Manual plans. For normal tissues that received a dose greater than 70% of the prescription dose, using a minimum DMF of 0.7 for FLASH sparing compensated for the increase in EQD2mean resulting from replacing ABPF with SBPF schedules. CONCLUSIONS: The EQD2-IOF can automatically optimize SBPF FLASH-RT plans to achieve optimal sparing of normal tissues. With an energy switching time of 27 ms, the loss of fractionate repairing using SBPF schedules in high-dose regions can be compensated for by the FLASH effect. However, when an energy switching time of 500 ms is utilized, the SBPF schedule needs careful consideration, as the FLASH effect diminishes with longer irradiation time.

3.
Med Phys ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984805

ABSTRACT

BACKGROUND: Positron emission tomography (PET) has been investigated for its ability to reconstruct proton-induced positron activity distributions in proton therapy. This technique holds potential for range verification in clinical practice. Recently, deep learning-based dose estimation from positron activity distributions shows promise for in vivo proton dose monitoring and guided proton therapy. PURPOSE: This study evaluates the effectiveness of three classical neural network models, recurrent neural network (RNN), U-Net, and Transformer, for proton dose estimating. It also investigates the characteristics of these models, providing valuable insights for selecting the appropriate model in clinical practice. METHODS: Proton dose calculations for spot beams were simulated using Geant4. Computed tomography (CT) images from four head cases were utilized, with three for training neural networks and the remaining one for testing. The neural networks were trained with one-dimensional (1D) positron activity distributions as inputs and generated 1D dose distributions as outputs. The impact of the number of training samples on the networks was examined, and their dose prediction performance in both homogeneous brain and heterogeneous nasopharynx sites was evaluated. Additionally, the effect of positron activity distribution uncertainty on dose prediction performance was investigated. To quantitatively evaluate the models, mean relative error (MRE) and absolute range error (ARE) were used as evaluation metrics. RESULTS: The U-Net exhibited a notable advantage in range verification with a smaller number of training samples, achieving approximately 75% of AREs below 0.5 mm using only 500 training samples. The networks performed better in the homogeneous brain site compared to the heterogeneous nasopharyngeal site. In the homogeneous brain site, all networks exhibited small AREs, with approximately 90% of the AREs below 0.5 mm. The Transformer exhibited the best overall dose distribution prediction, with approximately 92% of MREs below 3%. In the heterogeneous nasopharyngeal site, all networks demonstrated acceptable AREs, with approximately 88% of AREs below 3 mm. The Transformer maintained the best overall dose distribution prediction, with approximately 85% of MREs below 5%. The performance of all three networks in dose prediction declined as the uncertainty of positron activity distribution increased, and the Transformer consistently outperformed the other networks in all cases. CONCLUSIONS: Both the U-Net and the Transformer have certain advantages in the proton dose estimation task. The U-Net proves well suited for range verification with a small training sample size, while the Transformer outperforms others at dose-guided proton therapy.

4.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Monoclonal, Humanized , Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Middle Aged , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/drug therapy , Adult , China/epidemiology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Chemoradiotherapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Young Adult , Adolescent , Progression-Free Survival
5.
Oral Oncol ; 156: 106918, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943870

ABSTRACT

OBJECTIVES: Neoadjuvant chemoimmunotherapy has shown promising results for resectable, locoregionally advanced (LA) head and neck squamous cell carcinoma (L/A HNSCC). We published the first phase II trial of neoadjuvant camrelizumab combined with chemotherapy in resectable, L/A HNSCC, demonstrating it was safe and feasible with favorable pathological complete response (pCR). Here, we report the final analysis results for neoadjuvant chemoimmunotherapy in L/A HNSCC (minimum 2.0 years of follow-up). MATERIALS AND METHODS: Three cycles of chemoimmunotherapy were administered before surgery to patients with L/A HNSCC. Two-year disease-free survival (DFS), overall survival (OS) and quality of life (QOL) were reported. RESULTS: The overall two-year DFS and OS rates were 90 % and 100 %, respectively. With a median follow-up of 33.7 months, 9 of 10 (90 %) patients with pCR were alive and disease free. Patients with TNM stage (II/III) or < 20 % of residual viable tumor trended toward improved DFS; hazard ratio (HR), 0.44 [95 % confidence interval (CI), 0.04-5.28] and HR, 0.26 (95 % CI, 0.03-2.36), respectively. All QLQ-C30 functioning and symptom scales other than nausea and vomiting were resolved at 2 years after the completion of radiotherapy. CONCLUSION: Neoadjuvant camrelizumab in combination with chemotherapy provided encouraging clinical outcomes for patients with L/A HNSCC. Further studies with longer follow-up and larger samples are warranted. TRIAL REGISTRATION: Chictr.org.cn, ChiCTR1900025303. Registered Aug 22, 2019. https://www.chictr.org.cn/showproj.html?proj=41380.


Subject(s)
Head and Neck Neoplasms , Immunotherapy , Neoadjuvant Therapy , Squamous Cell Carcinoma of Head and Neck , Humans , Neoadjuvant Therapy/methods , Male , Female , Middle Aged , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/mortality , Aged , Immunotherapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Adult , Quality of Life , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
6.
Lancet Oncol ; 25(7): 901-911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823410

ABSTRACT

BACKGROUND: Antibody-drug conjugates have promising clinical activity in the treatment of solid tumours. BL-B01D1 is a first-in-class EGFR-HER3 bispecific antibody-drug conjugate. We aimed to assess the safety and preliminary antitumour activity of BL-B01D1 in patients with locally advanced or metastatic solid tumours. METHODS: This first-in-human, open-label, multicentre, dose-escalation and dose-expansion phase 1 trial was conducted in seven hospitals in China, enrolling patients aged 18-75 years (dose escalation; phase 1a) or older than 18 years (dose expansion; phase 1b), with a life expectancy of at least 3 months, an Eastern Cooperative Oncology Group performance status of 0-1, and histologically or cytologically confirmed locally advanced or metastatic solid tumours that had progressed on current standard treatment. In the phase 1a i3+3 design, patients received intravenous BL-B01D1 at three different schedules: 0·27 mg/kg, 1·5 mg/kg, and 3·0 mg/kg weekly; 2·5 mg/kg, 3·0 mg/kg, and 3·5 mg/kg on days 1 and 8 of each cycle every 3 weeks; or 5·0 mg/kg and 6·0 mg/kg on day 1 of each cycle every 3 weeks. The primary objectives of phase 1a were to identify the safety, maximum tolerated dose, and dose-limiting toxicity. In phase 1b, patients were treated in two schedules: 2·5 and 3·0 mg/kg on days 1 and 8 every 3 weeks, or 4·5, 5·0, and 6·0 mg/kg on day 1 every 3 weeks. The primary objectives of phase 1b were to assess the safety and recommended phase 2 dose of BL-B01D1, and objective response rate was a key secondary endpoint. Safety was analysed in all patients with safety records who received at least one dose of BL-B01D1. Antitumour activity was assessed in the activity analysis set which included all patients who received at least one dose of BL-B01D1 every 3 weeks. This trial is registered with China Drug Trials, CTR20212923, and ClinicalTrials.gov, NCT05194982, and recruitment is ongoing. FINDINGS: Between Dec 8, 2021, and March 13, 2023, 195 patients (133 [65%] men and 62 [32%] women; 25 in phase 1a and 170 in phase 1b) were consecutively enrolled, including 113 with non-small-cell lung cancer, 42 with nasopharyngeal carcinomas, 13 with small-cell lung cancer, 25 with head and neck squamous cell carcinoma, one with thymic squamous cell carcinoma, and one with submandibular lymphoepithelioma-like carcinoma. In phase 1a, four dose-limiting toxicities were observed (two at 3·0 mg/kg weekly and two at 3·5 mg/kg on days 1 and 8 every 3 weeks; all were febrile neutropenia), thus the maximum tolerated dose was reached at 3·0 mg/kg on days 1 and 8 every 3 weeks and 6·0 mg/kg on day 1 every 3 weeks. Grade 3 or worse treatment-related adverse events occurred in 139 (71%) of 195 patients; the most common of which were neutropenia (91 [47%]), anaemia (76 [39%]), leukopenia (76 [39%]), and thrombocytopenia (63 [32%]). 52 (27%) patients had a dose reduction and five (3%) patients discontinued treatment due to treatment-related adverse events. One patient was reported as having interstitial lung disease. Treatment-related deaths occurred in three (2%) patients (one due to pneumonia, one due to septic shock, and one due to myelosuppression). In 174 patients evaluated for activity, median follow-up was 6·9 months (IQR 4·5-8·9) and 60 (34%; 95% CI 27-42) patients had an objective response. INTERPRETATION: Our results suggest that BL-B01D1 has preliminary antitumour activity in extensively and heavily treated advanced solid tumours with an acceptable safety profile. Based on the safety and antitumour activity data from both phase 1a and 1b, 2·5 mg/kg on days 1 and 8 every 3 weeks was selected as the recommended phase 2 dose in Chinese patients. FUNDING: Sichuan Baili Pharmaceutical. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Bispecific , ErbB Receptors , Immunoconjugates , Neoplasms , Receptor, ErbB-3 , Humans , Middle Aged , Male , Female , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/therapeutic use , Aged , Adult , Neoplasms/drug therapy , Neoplasms/pathology , Immunoconjugates/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/therapeutic use , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/immunology , Young Adult , Maximum Tolerated Dose , Adolescent , Neoplasm Metastasis , China , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use
7.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38718814

ABSTRACT

Objective.To evaluate the feasibility of using a deep learning dose prediction approach to identify patients who could benefit most from proton therapy based on the normal tissue complication probability (NTCP) model.Approach.Two 3D UNets were established to predict photon and proton doses. A dataset of 95 patients with localized prostate cancer was randomly partitioned into 55, 10, and 30 for training, validation, and testing, respectively. We selected NTCP models for late rectum bleeding and acute urinary urgency of grade 2 or higher to quantify the benefit of proton therapy. Propagated uncertainties of predicted ΔNTCPs resulting from the dose prediction errors were calculated. Patient selection accuracies for a single endpoint and a composite evaluation were assessed under different ΔNTCP thresholds.Main results.Our deep learning-based dose prediction technique can reduce the time spent on plan comparison from approximately 2 days to as little as 5 seconds. The expanded uncertainty of predicted ΔNTCPs for rectum and bladder endpoints propagated from the dose prediction error were 0.0042 and 0.0016, respectively, which is less than one-third of the acceptable tolerance. The averaged selection accuracies for rectum bleeding, urinary urgency, and composite evaluation were 90%, 93.5%, and 93.5%, respectively.Significance.Our study demonstrates that deep learning dose prediction and NTCP evaluation scheme could distinguish the NTCP differences between photon and proton treatment modalities. In addition, the dose prediction uncertainty does not significantly influence the decision accuracy of NTCP-based patient selection for proton therapy. Therefore, automated deep learning dose prediction and NTCP evaluation schemes can potentially be used to screen large patient populations and to avoid unnecessary delays in the start of prostate cancer radiotherapy in the future.


Subject(s)
Automation , Deep Learning , Prostatic Neoplasms , Proton Therapy , Radiotherapy Dosage , Humans , Male , Prostatic Neoplasms/radiotherapy , Proton Therapy/adverse effects , Proton Therapy/methods , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Decision Support Systems, Clinical , Organs at Risk/radiation effects , Probability , Uncertainty
8.
Cancer Lett ; 592: 216898, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38670306

ABSTRACT

Radiotherapy (RT) is used for over 50 % of cancer patients and can promote adaptive immunity against tumour antigens. However, the underlying mechanisms remain unclear. Here, we discovered that RT induces the release of irradiated tumour cell-derived microparticles (RT-MPs), which significantly upregulate MHC-I expression on the membranes of non-irradiated cells, enhancing the recognition and killing of these cells by T cells. Mechanistically, RT-MPs induce DNA double-strand breaks (DSB) in tumour cells, activating the ATM/ATR/CHK1-mediated DNA repair signalling pathway, and upregulating MHC-I expression. Inhibition of ATM/ATR/CHK1 reversed RT-MP-induced upregulation of MHC-I. Furthermore, phosphorylation of STAT1/3 following the activation of ATM/ATR/CHK1 is indispensable for the DSB-dependent upregulation of MHC-I. Therefore, our findings reveal the role of RT-MP-induced DSBs and the subsequent DNA repair signalling pathway in MHC-I expression and provide mechanistic insights into the regulation of MHC-I expression after DSBs.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Cell-Derived Microparticles , DNA Breaks, Double-Stranded , DNA Repair , Histocompatibility Antigens Class I , Signal Transduction , Up-Regulation , Humans , Cell-Derived Microparticles/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Animals , Phosphorylation , Gene Expression Regulation, Neoplastic , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Mice , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/radiotherapy , Neoplasms/immunology
9.
J Nanobiotechnology ; 22(1): 156, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589867

ABSTRACT

Immunotherapy has revolutionized the treatment of cancer. However, its efficacy remains to be optimized. There are at least two major challenges in effectively eradicating cancer cells by immunotherapy. Firstly, cancer cells evade immune cell killing by down-regulating cell surface immune sensors. Secondly, immune cell dysfunction impairs their ability to execute anti-cancer functions. Radiotherapy, one of the cornerstones of cancer treatment, has the potential to enhance the immunogenicity of cancer cells and trigger an anti-tumor immune response. Inspired by this, we fabricate biofunctionalized liposome-like nanovesicles (BLNs) by exposing irradiated-cancer cells to ethanol, of which ethanol serves as a surfactant, inducing cancer cells pyroptosis-like cell death and facilitating nanovesicles shedding from cancer cell membrane. These BLNs are meticulously designed to disrupt both of the aforementioned mechanisms. On one hand, BLNs up-regulate the expression of calreticulin, an "eat me" signal on the surface of cancer cells, thus promoting macrophage phagocytosis of cancer cells. Additionally, BLNs are able to reprogram M2-like macrophages into an anti-cancer M1-like phenotype. Using a mouse model of malignant pleural effusion (MPE), an advanced-stage and immunotherapy-resistant cancer model, we demonstrate that BLNs significantly increase T cell infiltration and exhibit an ablative effect against MPE. When combined with PD-1 inhibitor (α-PD-1), we achieve a remarkable 63.6% cure rate (7 out of 11) among mice with MPE, while also inducing immunological memory effects. This work therefore introduces a unique strategy for overcoming immunotherapy resistance.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/metabolism , Neoplasms/radiotherapy , Neoplasms/metabolism , Macrophages/metabolism , Immunotherapy , Ethanol/metabolism , Cell Line, Tumor
10.
Phys Eng Sci Med ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647634

ABSTRACT

We proposed a deep learning approach to classify various error types in daily VMAT treatment of head and neck cancer patients based on EPID dosimetry, which could provide additional information to support clinical decisions for adaptive planning. 146 arcs from 42 head and neck patients were analyzed. Anatomical changes and setup errors were simulated in 17,820 EPID images of 99 arcs obtained from 30 patients using in-house software for model training, validation, and testing. Subsequently, 141 clinical EPID images from 47 arcs belonging to the remaining 12 patients were utilized for clinical testing. The hierarchical convolutional neural network (HCNN) model was trained to classify error types and magnitudes using EPID dose difference maps. Gamma analysis with 3%/2 mm (dose difference/distance to agreement) criteria was also performed. The F1 score, a combination of precision and recall, was utilized to evaluate the performance of the HCNN model and gamma analysis. The adaptive fractioned doses were calculated to verify the HCNN classification results. For error type identification, the overall F1 score of the HCNN model was 0.99 and 0.91 for primary type and subtype identification, respectively. For error magnitude identification, the overall F1 score in the simulation dataset was 0.96 and 0.70 for the HCNN model and gamma analysis, respectively; while the overall F1 score in the clinical dataset was 0.79 and 0.20 for the HCNN model and gamma analysis, respectively. The HCNN model-based EPID dosimetry can identify changes in patient transmission doses and distinguish the treatment error category, which could potentially provide information for head and neck cancer treatment adaption.

11.
Cell Biosci ; 14(1): 49, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632627

ABSTRACT

Reciprocal interactions between the tumor microenvironment (TME) and cancer cells play important roles in tumorigenesis and progression of glioma. Glioma-associated macrophages (GAMs), either of peripheral origin or representing brain-intrinsic microglia, are the majority population of infiltrating immune cells in glioma. GAMs, usually classified into M1 and M2 phenotypes, have remarkable plasticity and regulate tumor progression through different metabolic pathways. Recently, research efforts have increasingly focused on GAMs metabolism as potential targets for glioma therapy. This review aims to delineate the metabolic characteristics of GAMs within the TME and provide a summary of current therapeutic strategies targeting GAMs metabolism in glioma. The goal is to provide novel insights and therapeutic pathways for glioma by highlighting the significance of GAMs metabolism.

12.
Microbiol Spectr ; 12(5): e0295523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38497713

ABSTRACT

In this study, we first time sequenced and analyzed the 16S rRNA gene data of predator ladybird beetles Novius pumilus and globally distributed invasive pest Icerya aegyptiaca at different stages, and combined data with bacterial genome sequences in N. pumilus to explored the taxonomic distribution, alpha and beta diversity, differentially abundant bacteria, co-occurrence network, and putative functions of their microbial community. Our finding revealed that Candidatus Walczuchella, which exhibited a higher abundance in I. aegyptiaca, possessed several genes in essential amino acid biosynthesis and seemed to perform roles in providing nutrients to the host, similar to other obligate symbionts in scale insects. Lactococcus, Serratia, and Pseudomonas, more abundant in N. pumilus, were predicted to have genes related to hydrocarbon, fatty acids, and chitin degradation, which may assist their hosts in digesting the wax shell covering the scale insects. Notably, our result showed that Lactococcus had relatively higher abundances in adults and eggs compared to other stages in N. pumilus, indicating potential vertical transmission. Additionally, we found that Arsenophonus, known to influence sex ratios in whitefly and wasp, may also function in I. aegyptiaca, probably by influencing nutrient metabolism as it similarly had many genes corresponding to vitamin B and essential amino acid biosynthesis. Also, we observed a potential horizontal transfer of Arsenophonus between the scale insect and its predator, with a relatively high abundance in the ladybirds compared to other bacteria from the scale insects.IMPORTANCEThe composition and dynamic changes of microbiome in different developmental stages of ladybird beetles Novius pumilus with its prey Icerya aegyptiaca were detected. We found that Candidatus Walczuchella, abundant in I. aegyptiaca, probably provide nutrients to their host based on their amino acid biosynthesis-related genes. Abundant symbionts in N. pumilus, including Lactococcus, Serratia, and Pseudophonus, may help the host digest the scale insects with their hydrocarbon, fatty acid, and chitin degrading-related genes. A key endosymbiont Arsenophonus may play potential roles in the nutrient metabolisms and sex determination in I. aegyptiaca, and is possibly transferred from the scale insect to the predator.


Subject(s)
Bacteria , Coleoptera , Symbiosis , Animals , Coleoptera/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Gene Transfer, Horizontal , Phylogeny , Female , Microbiota
13.
Theranostics ; 14(3): 1224-1240, 2024.
Article in English | MEDLINE | ID: mdl-38323313

ABSTRACT

Background: The role of senescent cells in the tumor microenvironment (TME) is usually bilateral, and diverse therapeutic approaches, such as radiotherapy and chemotherapy, can induce cellular senescence. Cellular interactions are widespread in the TME, and tumor cells reprogram immune cells metabolically by producing metabolites. However, how senescent cells remodel the metabolism of TME remains unclear. This study aimed to explore precise targets to enhance senescent cells-induced anti-tumor immunity from a metabolic perspective. Methods: The in vivo senescence model was induced by 8 Gy×3 radiotherapy or cisplatin chemotherapy, and the in vitro model was induced by 10 Gy-irradiation or cisplatin treatment. Metabonomic analysis and ELISA assay on tumor interstitial fluid were performed for metabolites screening. Marker expression and immune cell infiltration in the TME were analyzed by flow cytometry. Cell co-culture system and senescence-conditioned medium were used for crosstalk validation in vitro. RNA sequencing and rescue experiments were conducted for mechanism excavation. Immunofluorescence staining and single-cell transcriptome profiling analysis were performed for clinical validation. Results: We innovatively reveal the metabolic landscape of the senescent TME, characterized with the elevation of adenosine. It is attributed to the senescent tumor cell-induced CD73 upregulation of tumor-associated macrophages (TAMs). CD73 expression in TAMs is evoked by SASP-related pro-inflammatory cytokines, especially IL-6, and regulated by JAK/STAT3 pathway. Consistently, a positive correlation between tumor cells senescence and TAMs CD73 expression is identified in lung cancer clinical specimens and databases. Lastly, blocking CD73 in a senescent background suppresses tumors and activates CD8+ T cell-mediated antitumor immunity. Conclusions: TAMs expressed CD73 contributes significantly to the adenosine accumulation in the senescent TME, suggesting targeting CD73 is a novel synergistic anti-tumor strategy in the aging microenvironment.


Subject(s)
Lung Neoplasms , Tumor Microenvironment , Humans , Cisplatin , Macrophages/metabolism , Cellular Senescence , Lung Neoplasms/pathology , Adenosine/metabolism
14.
Theranostics ; 14(3): 1147-1167, 2024.
Article in English | MEDLINE | ID: mdl-38323315

ABSTRACT

Interest surrounding the effect of irradiation on immune activation has exponentially grown within the last decade. This includes work regarding mechanisms of the abscopal effect and the success achieved by combination of radiotherapy and immunotherapy. It is hypothesized that irradiation triggers the immune system to eliminate tumors by inducing tumor cells immunogenic cell death (ICD) in tumor cells. Activation of the ICD pathways can be exploited as an in situ vaccine. In this review, we provide fundamental knowledge of various forms of ICD caused by irradiation, describe the relationship between various cell death pathways and the immune activation effect driven by irradiation, and focus on the therapeutic value of exploiting these cell death programs in the context of irradiation. Furthermore, we summarize the immunomodulatory effect of different cell death programs on combinative radiotherapy and immunotherapy. In brief, differences in cell death programs significantly impact the irradiation-induced immune activation effect. Evaluating the transition between them will provide clues to develop new strategies for radiotherapy and its combination with immunotherapy.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Cell Death , Immunotherapy , Immune System , Vaccination
15.
J Exp Clin Cancer Res ; 43(1): 34, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281999

ABSTRACT

BACKGROUND: The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS: Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3ß on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS: We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3ß kinase to recognize and degrade IGF2BP2. CONCLUSIONS: Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Large Neutral Amino Acid-Transporter 1 , Lung Neoplasms , RNA-Binding Proteins , Animals , Mice , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/genetics , Large Neutral Amino Acid-Transporter 1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , RNA , F-Box-WD Repeat-Containing Protein 7/genetics , RNA-Binding Proteins/genetics , Radiation Tolerance
16.
Cancer Cell ; 42(3): 464-473.e3, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38242125

ABSTRACT

The AJCC/UICC TNM classification describes anatomic extent of tumor progression and guides treatment decisions. Our comprehensive analysis of 8,834 newly diagnosed patients with non-metastatic Epstein-Barr virus related nasopharyngeal carcinoma (NPC) from six Chinese centers indicates certain limitations in the current staging system. The 8th edition of the AJCC/UICC TNM classification inadequately differentiates patient outcomes, particularly between T2 and T3 categories and within the N classification. We propose reclassifying cases of T3 NPC with early skull-base invasion as T2, and elevating N1-N2 cases with grade 3 image-identified extranodal extension (ENE) to N3. Additionally, we suggest combining T2N0 with T1N0 into a single stage IA. For de novo metastatic (M1) NPC, we propose subdivisions of M1a, defined by 1-3 metastatic lesions without liver involvement, and M1b, characterized by >3 metastatic lesions or liver involvement. This proposal better reflects responses of NPC patients to the up-to-date treatments and their evolving risk profiles.


Subject(s)
Carcinoma , Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Neoplasm Staging , Herpesvirus 4, Human , Prognosis , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/pathology , Epstein-Barr Virus Infections/pathology , Carcinoma/pathology , Retrospective Studies
17.
J Exp Clin Cancer Res ; 43(1): 28, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254206

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS: A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS: In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION: This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Ubiquitin-Specific Peptidase 7 , beta Karyopherins , Humans , Apoptosis , Brain Neoplasms/genetics , Glioblastoma/genetics , Transcription Factors , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
18.
Cell Death Differ ; 31(3): 309-321, 2024 03.
Article in English | MEDLINE | ID: mdl-38287116

ABSTRACT

Cisplatin-based chemotherapy improves the control of distant metastases in patients with nasopharyngeal carcinoma (NPC); however, around 30% of patients fail treatment due to acquired drug resistance. Epigenetic regulation is known to contribute to cisplatin resistance; nevertheless, the underlying mechanisms remain poorly understood. Here, we showed that lysine-specific demethylase 5B (KDM5B) was overexpressed and correlates with tumor progression and cisplatin resistance in patients with NPC. We also showed that specific inhibition of KDM5B impaired the progression of NPC and reverses cisplatin resistance, both in vitro and in vivo. Moreover, we found that KDM5B inhibited the expression of ZBTB16 by directly reducing H3K4me3 at the ZBTB16 promoter, which subsequently increased the expression of Topoisomerase II- α (TOP2A) to confer cisplatin resistance in NPC. In addition, we showed that the deubiquitinase USP7 was critical for deubiquitinating and stabilizing KDM5B. More importantly, the deletion of USP7 increased sensitivity to cisplatin by disrupting the stability of KDM5B in NPC cells. Therefore, our findings demonstrated that USP7 stabilized KDM5B and promoted cisplatin resistance through the ZBTB16/TOP2A axis, suggesting that targeting KDM5B may be a promising cisplatin-sensitization strategy in the treatment of NPC.


Subject(s)
Cisplatin , Nasopharyngeal Neoplasms , Humans , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases/genetics , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nuclear Proteins , Promyelocytic Leukemia Zinc Finger Protein , Repressor Proteins , Ubiquitin-Specific Peptidase 7/genetics
19.
Med Phys ; 51(3): 2164-2174, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38169535

ABSTRACT

BACKGROUND: While the Bragg peak proton beam (BP) is capable of superior target conformity and organs-at-risk sparing than the transmission proton beam (TB), its efficacy in FLASH-RT is hindered by both a slow energy switching process and the beam current. A universal range shifter (URS) can pull back the high-energy proton beam while preserving the beam current. Meanwhile, a superconducting gantry with large momentum acceptance (LMA-SC gantry) enables fast energy switching. PURPOSE: This study explores the feasibility of multiple-energy BP FLASH-RT on the LMA-SC gantry. METHOD AND MATERIALS: A simultaneous dose and spot map optimization algorithm was developed for BP FLASH-RT treatment planning to improve the dose delivery efficiency. The URS was designed to be 0-27 cm thick, with 1 cm per step. BP plans using the URS were optimized using single-field optimization (SFO) and multiple-field optimization (MFO) for ten prostate cancer patients and ten lung cancer patients. The plan delivery parameters, dose, and dose rate metrics of BP plans were compared to those of TB plans using the parameters of the LMA-SC gantry. RESULTS: Compared to TB plans, BP plans significantly reduced MUs by 42.7% (P < 0.001) with SFO and 33.3% (P < 0.001) with MFO for prostate cases. For lung cases, the reduction in MUs was 56.8% (P < 0.001) with SFO and 36.4% (P < 0.001) with MFO. BP plans also outperformed TB plans by reducing mean normal tissue doses. BP-SFO plans achieved a reduction of 56.7% (P < 0.001) for prostate cases and 57.7% (P < 0.001) for lung cases, while BP-MFO plans achieved a reduction of 54.2% (P < 0.001) for the prostate case and 40.0% (P < 0.001) for lung cases. For both TB and BP plans, normal tissues in prostate and lung cases received 100.0% FLASH dose rate coverage (>40 Gy/s). CONCLUSIONS: By utilizing the URS and the LMA-SC gantry, it is possible to perform multiple-energy BP FLASH-RT, resulting in better normal tissue sparing, as compared to TB plans.


Subject(s)
Proton Therapy , Radiotherapy, Intensity-Modulated , Male , Humans , Protons , Feasibility Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Proton Therapy/methods
20.
Viruses ; 16(1)2024 01 17.
Article in English | MEDLINE | ID: mdl-38257832

ABSTRACT

Sever Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still a threat to human health globally despite the World Health Organization (WHO) announcing the end of the COVID-19 pandemic. Continued surveillance of SARS-CoV-2 at national borders would be helpful in understanding the epidemics of novel imported variants and updating local strategies for disease prevention and treatment. This study focuses on the surveillance of imported SARS-CoV-2 variants among travelers entering Xiamen International Airport and the Port of Xiamen from February to August 2023. A total of 97 imported SARS-CoV-2 sequences among travelers from 223 cases collected from 12 different countries and regions were identified by real-time RT-PCR. Next-generation sequencing was used to generate high-quality complete sequences for phylogenetic and population dynamic analysis. The study revealed a dominant shift in variant distribution, in which the XBB subvariant (XBB.1.5, XBB.1.16, XBB.1.9, XBB.2.3, and EG.5.1) accounted for approximately 88.8% of the sequenced samples. In detail, clades 23D and 23E accounted for 26.2% and 21.4% of the sequenced samples, respectively, while clades 23B (13.6%) and 23F (10.7%) took the third and fourth spots in the order of imported sequences, respectively. Additionally, the XBB.2.3 variants were first identified in imported cases from the mainland of Xiamen, China on 27 February 2023. The spatiotemporal analyses of recent viral genome sequences from a limited number of travelers into Xiamen provide valuable insights into the situation surrounding SARS-CoV-2 and highlight the importance of sentinel surveillance of SARS-CoV-2 variants in the national border screening of incoming travelers, which serves as an early warning system for the presence of highly transmissible circulating SARS-CoV-2 lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Airports , Pandemics , Phylogeny , COVID-19/epidemiology , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...