Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.298
Filter
1.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39027997

ABSTRACT

The dental follicle (DF) plays an indispensable role in tooth eruption by regulating bone remodeling through their influence on osteoblast and osteoclast activity. The process of tooth eruption involves a series of intricate regulatory mechanisms and signaling pathways. Disruption of the parathyroid hormone­related protein (PTHrP) in the PTHrP­PTHrP receptor signaling pathway inhibits osteoclast differentiation by DF cells (DFCs), thus resulting in obstructed tooth eruption. Furthermore, parathyroid hormone receptor­1 mutations are linked to primary tooth eruption failure. Additionally, the Wnt/ß­catenin, TGF­ß, bone morphogenetic protein and Hedgehog signaling pathways have crucial roles in DFC involvement in tooth eruption. DFC signal loss or alteration inhibits osteoclast differentiation, affects osteoblast and cementoblast differentiation, and suppresses DFC proliferation, thus resulting in failed tooth eruptions. Abnormal tooth eruption is also associated with a range of systemic syndromes and genetic diseases, predominantly resulting from pathogenic gene mutations. Among these conditions, the following disorders arise due to genetic mutations that disrupt DFCs and impede proper tooth eruption: Cleidocranial dysplasia associated with Runt­related gene 2 gene mutations; osteosclerosis caused by CLCN7 gene mutations; mucopolysaccharidosis type VI resulting from arylsulfatase B gene mutations; enamel renal syndrome due to FAM20A gene mutations; and dentin dysplasia caused by mutations in the VPS4B gene. In addition, regional odontodysplasia and multiple calcific hyperplastic DFs are involved in tooth eruption failure; however, they are not related to gene mutations. The specific mechanism for this effect requires further investigation. To the best of our knowledge, previous reviews have not comprehensively summarized the syndromes associated with DF abnormalities manifesting as abnormal tooth eruption. Therefore, the present review aims to consolidate the current knowledge on DFC signaling pathways implicated in abnormal tooth eruption, and their association with disorders of tooth eruption in genetic diseases and syndromes, thereby providing a valuable reference for future related research.


Subject(s)
Dental Sac , Tooth Eruption , Humans , Dental Sac/metabolism , Mutation , Signal Transduction , Animals , Osteoclasts/metabolism , Osteoclasts/pathology , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics , Cell Differentiation , Parathyroid Hormone-Related Protein/metabolism , Parathyroid Hormone-Related Protein/genetics
2.
Int J Biol Macromol ; 276(Pt 2): 133898, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019369

ABSTRACT

Patients may find it challenging to accept several FDA-approved drugs for Alzheimer's disease (AD) treatment due to their unaffordable prices and side effects. Despite the known antioxidant, anti-inflammatory, and microbiota-regulating effects of common buckwheat (Fagopyrum esculentum) polysaccharides (FEP), their specific role in preventing AD has not been determined. Here, this study investigated the preventive effects of FEP on AD development in AlCl3-treated rats. The physical properties of FEP were evaluated using X-ray diffraction, FTIR, TGA, DSC, monosaccharide composition, molecular weight, and scanning electron microscopy. The results demonstrated that FEP administration improved memory and learning ability in AlCl3-treated rats. Additionally, AD pathological biomarkers (APP, BACE1, Aß1-42, and p-TauSer404), inflammatory-associated proteins (IL-1ß, IL-6, TNF-α, and Iba1), and MDA and the RAGE/p38/NF-κB pathway were elevated in AlCl3-treated rats. Moreover, these effects were reversed by the upregulation of LRP1, anti-inflammatory cytokines (IL-4 and IL-10), antioxidant enzymes (SOD and catalase), and autophagy proteins (Atg5, Beclin-1, and LC3B). Furthermore, FEP treatment increased the levels of short-chain fatty acids (SCFAs) and the abundance of SCFAs-producing microbes ([Eubacterium]_xylanophilum_group, Lachnospiraceae_NK4A136_group, Lactobacillus). Overall, FEP mitigated oxidative stress, RAGE/p38/NF-κB-mediated neuroinflammation, and AD-associated proteins by upregulating autophagy and SCFA levels, which led to the amelioration of cognitive impairment through microbiota-gut-brain communication in AlCl3-treated rats.

3.
Int J Biol Sci ; 20(9): 3302-3316, 2024.
Article in English | MEDLINE | ID: mdl-38993558

ABSTRACT

Background: Parkinson's disease (PD) is marked by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and cognitive dysfunctions. The molecular mechanisms underlying synaptic alterations in PD remain elusive, with a focus on the role of Itga5 in synaptic integrity and motor coordination and TAT-Itga5 was designed to suppress PTEN activity in this investigation. Methods: This study utilized MPTP-induced PD animal models to investigate the expression and role of Itga5 in the striatum. Techniques included quantitative PCR, Western blotting, immunostaining, CRISPR-CasRx-mediated knockdown, electrophysiological assays, behavioral tests, and mass spectrometry. Results: Itga5 expression was significantly reduced in MPTP-induced PD models. In these models, a marked decrease in dendritic spine density and a shift towards thinner spines in striatal GABA neurons were observed, suggesting impaired synaptic integration. Knockdown of Itga5 resulted in reduced dendritic branching, decreased mushroom spines, and increased thin spines, altering synaptic architecture. Electrophysiological analyses revealed changes in action potential and spontaneous excitatory postsynaptic currents, indicating altered synaptic transmission. Motor behavior assessments showed that Itga5 deficiency led to impairments in fine motor control and coordination. Furthermore, Itga5 was found to interact with PTEN, affecting AKT signaling crucial for synaptic development and motor coordination. Conclusion: The study demonstrates that Itga5 plays a critical role in maintaining synaptic integrity and motor coordination in PD. The Itga5-PTEN-AKT pathway represents a potential therapeutic target for addressing synaptic and motor dysfunctions in PD.


Subject(s)
PTEN Phosphohydrolase , Parkinson Disease , Signal Transduction , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , Male , Mice , Corpus Striatum/metabolism , Mice, Inbred C57BL , Integrin alpha5/metabolism , Integrin alpha5/genetics , Synapses/metabolism , Disease Models, Animal
4.
World J Radiol ; 16(6): 211-220, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983836

ABSTRACT

BACKGROUND: Solid pseudopapillary neoplasms of the pancreas (SPN) share similar imaging findings with pancreatic ductal adenocarcinoma with cystic changes (PDAC with cystic changes), which may result in unnecessary surgery. AIM: To investigate the value of computed tomography (CT) in differentiation of SPN from PDAC with cystic changes. METHODS: This study retrospectively analyzed the clinical and imaging findings of 32 patients diagnosed with SPN and 14 patients diagnosed with PDAC exhibiting cystic changes, confirmed through pathological diagnosis. Quantitative and qualitative analysis was performed, including assessment of age, sex, tumor size, shape, margin, density, enhancement pattern, CT values of tumors, CT contrast enhancement ratios, "floating cloud sign," calcification, main pancreatic duct dilatation, pancreatic atrophy, and peripancreatic invasion or distal metastasis. Multivariate logistic regression analysis was used to identify relevant features to differentiate between SPN and PDAC with cystic changes, and receiver operating characteristic curves were obtained to evaluate the diagnostic performance of each variable and their combination. RESULTS: When compared to PDAC with cystic changes, SPN had a lower age (32 years vs 64 years, P < 0.05) and a slightly larger size (5.41 cm vs 3.90 cm, P < 0.05). SPN had a higher frequency of "floating cloud sign" and peripancreatic invasion or distal metastasis than PDAC with cystic changes (both P < 0.05). No significant difference was found with respect to sex, tumor location, shape, margin, density, main pancreatic duct dilatation, calcification, pancreatic atrophy, enhancement pattern, CT values of tumors, or CT contrast enhancement ratios between the two groups (all P > 0.05). The area under the receiver operating characteristic curve of the combination was 0.833 (95% confidence interval: 0.708-0.957) with 78.6% sensitivity, 81.3% specificity, and 80.4% accuracy in differentiation of SPN from PDAC with cystic changes. CONCLUSION: A larger tumor size, "floating cloud sign," and peripancreatic invasion or distal metastasis are useful CT imaging features that are more common in SPN and may help discriminate SPN from PDAC with cystic changes.

5.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
6.
Huan Jing Ke Xue ; 45(7): 3839-3848, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022932

ABSTRACT

In order to control the increasing ozone (O3) pollution in Hebi, Henan Province, clarifying the pollution characteristics of ozone and its precursors is vital. Therefore, we conducted a comprehensive analysis of O3 pollution utilizing the OFP-PMF-EKMA method combined with online hourly resolution monitoring data of conventional pollutants and volatile organic compounds (VOCs) in the summer of 2022 (June-September). Ozone formation potential (OFP) was used to identify the key VOCs species, and the PMF model was used to identify the VOCs emission sources, whereas EKMA curves and scenario analysis were used to identify the main ozone control area in Hebi and to determine the reduction ratio of VOCs and NOx in a scientifically refined way. In 2022, Hebi had persistent O3 pollution, with the highest concentration in June. Conditions of high temperature, low humidity, and low atmospheric pressure contributed to the O3 accumulation. Aromatic and oxygenated volatile organic compounds (OVOCs) contributed significantly to the OFP and VOCs fraction, which were the dominant active substance and concentration dominant species. The results of the VOCs source analysis indicated that vehicle exhaust sources (25.3%) were the main source of atmospheric VOCs, followed by process sources (17.7%) and biomass combustion sources (17.6%). Thus, emission sources associated with the combustion of fossil fuels and industrial production emissions were the most urgent sources of atmospheric VOCs to be controlled in Hebi. The O3 generation in Hebi occurred in the VOCs-sensitive zones, and the emission reduction results showed that a synergistic emission reduction of VOCs and nitrogen oxide (NOx) could effectively control O3 pollution with a 75% reduction in VOCs and a 10% reduction in NOx.

7.
Adv Sci (Weinh) ; : e2400066, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973154

ABSTRACT

The mechanism and function of the expression of Schwann characteristics by nevus cells in the mature zone of the dermis are unknown. Early growth response 3 (EGR3) induces Schwann cell-like differentiation of melanoma cells by simulating the process of nevus maturation, which leads to a strong phenotypic transformation of the cells, including the formation of long protrusions and a decrease in cell motility, proliferation, and melanin production. Meanwhile, EGR3 regulates the levels of myelin protein zero (MPZ) and collagen type I alpha 1 chain (COL1A1) through SRY-box transcription factor 10 (SOX10)-dependent and independent mechanisms, by binding to non-strictly conserved motifs, respectively. Schwann cell-like differentiation demonstrates significant benefits in both in vivo and clinical studies. Finally, a CD86-P2A-EGR3 recombinant mRNA vaccine is developed which leads to tumor control through forced cell differentiation and enhanced immune infiltration. Together, these data support further development of the recombinant mRNA as a treatment for cancer.

8.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3414-3420, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041113

ABSTRACT

Based on the systematic deconstruction of multi-dimensional and multi-target biological networks, modular pharmacology explains the complex mechanism of diseases and the interactions of multi-target drugs. It has made progress in the fields of pathogenesis of disease, biological basis of disease and traditional Chinese medicine(TCM) syndrome, pharmacological mechanism of multi-target herbs, compatibility of formulas, and discovery of new drug of TCM compound. However, the complexity of multi-omics data and biological networks brings challenges to the modular deconstruction and analysis of the drug networks. Here, we constructed the "Computing Platform for Modular Pharmacology" online analysis system, which can implement the function of network construction, module identification, module discriminant analysis, hub-module analysis, intra-module and inter-module relationship analysis, and topological visualization of network based on quantitative expression profiles and protein-protein interaction(PPI) data. This tool provides a powerful tool for the research on complex diseases and multi-target drug mechanisms by means of modular pharmacology. The platform may have broad range of application in disease modular identification and correlation mechanism, interpretation of scientific principles of TCM, analysis of complex mechanisms of TCM and formulas, and discovery of multi-target drugs.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Computational Biology/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Pharmacology/methods , Protein Interaction Maps/drug effects
9.
Saf Health Work ; 15(2): 129-138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39035803

ABSTRACT

The COVID-19 pandemic has led to a significant surge in glove usage, as recommended by the World Health Organization. Despite efforts to ensure the quality and safety of gloves, glove-associated skin diseases such as hand dermatitis have become ubiquitous, particularly among health care workers. This review discusses the prevalence, causes, and risk factors of hand dermatitis, as well as research efforts in medical gloves in the past decade to overcome glove-related hand dermatitis. Research papers from 2013 to 2022 were reviewed, selecting only 49 relevant papers from the Ovid, PubMed, and Scopus databases. The average prevalence of hand dermatitis among health care workers increased from 21.08% to 37.24% upon the impact of the COVID-19 pandemic. The cases are likely due to allergies to latex proteins, rubber additives, and accelerators commonly found in gloves. Using alternatives to latex gloves, such as accelerator-free and latex-free glove options, can help reduce allergy-induced hand dermatitis. Strict hand hygiene practices, such as frequent hand washing and the use of sanitizers, are also contributing factors in contracting hand dermatitis. Over the past decade, glove research advancements have focused mainly on reducing or immobilizing latex proteins. These include the use of biodegradable dialdehyde, sodium alginate, arctigenin, bromelain, papain, UV-LED, prototype photoreactors, and structure-modified nanosilica with silane A174. Two effective hand dermatitis preventive measures, i.e. an additional layer of glove liners and the use of gentle alcohol-based hand sanitizer, were recommended. These advancements represent promising steps towards mitigating hand dermatitis risks associated with glove usage.

10.
Reprod Toxicol ; : 108671, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038764

ABSTRACT

Maternal prenatal hypoxia is an important contributor to intrauterine growth restriction (IUGR), which impedes fetal lung maturation and leads to the development of chronic lung diseases. Although evidence suggests the involvement of pyroptosis in IUGR, the molecular mechanism of pyroptosis is still unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been found to potentially interact with gasdermin D (GSDMD), the key protein responsible for pyroptosis, indicating its crucial role in inhibiting pyroptosis. Therefore, we hypothesized that Nrf2 deficiency is a key molecular responsible for lung pyroptosis in maternal hypoxia-induced IUGR offspring mice. Pregnant WT and Nrf2-/- mice were exposed to hypoxia (10.5% O2) to mimic IUGR model. We assessed body weight, lung histopathology, pulmonary angiogenesis, oxidative stress levels, as well as mRNA and protein expressions related to inflammation in the 2-week-old offspring. Additionally, we conducted a dual-luciferase reporter assay to confirm the targeting relationship between Nrf2 and GSDMD. Our findings revealed that offspring with maternal hypoxia-induced IUGR exhibited reduced birth weight, catch-up growth delay, and pulmonary dysplasia. Furthermore, we observed impaired nuclear translocation of Nrf2 and increased GSDMD-mediated pyroptosis in these offspring with IUGR. Moreover, the dual-luciferase reporter assay demonstrated that Nrf2 could directly inhibit GSDMD transcription; deficiency of Nrf2 exacerbated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR. Collectively, our findings suggest that Nrf2 deficiency induces GSDMD-mediated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR; thus highlighting the potential therapeutic approach of targeting Nrf2 for treating prenatal hypoxia-induced pulmonary dysplasia in offspring.

11.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3229-3241, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041084

ABSTRACT

Reyanning Mixture is one of the superior Chinese patent medicine varieties of "Qin medicine". Based on the idea of quality by design(QbD), the extraction process of the Reyanning Mixture was optimized. The caffeic acid, polydatin, resveratrol, and emodin were used as critical quality attributes(CQAs). The material-liquid ratio, extraction temperature, and extraction time were taken as critical process parameters(CPPs) by the Plackett-Burman test. The mathematical model was established by the star design-effect surface method, and the design space was constructed and verified. The optimal extraction process of the Reyanning Mixture was obtained as follows: material-liquid ratio of 11.84 g·mL~(-1), extraction temperature at 81 ℃, and two extractions. A partial least-square(PLS) quantitative model for CQAs was established by using near-infrared spectroscopy(NIRS) combined with high-performance liquid chromatography(HPLC) under the optimal extraction process. The results showed that the correlation coefficients of the correction set(R_c) and validation set(R_p) of the quantitative models of four CQAs were more than 0.9. The root mean square error of the correction set(RMSEC) were 0.744, 6.71, 3.95, and 1.53 µg·mL~(-1), respectively, and the root mean square error of the validation set(RMSEP) were 0.709, 5.88, 2.92, and 1.59 µg·mL~(-1), respectively. Therefore, the optimized extraction process of the Reyanning Mixture is reasonable, feasible, stable, and reliable. The NIRS quantitative model has a good prediction, which can be used for the rapid content determination of CQAs during extraction. They can provide an experimental basis for the process research and quality control of Reyanning Mixture.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid , Quality Control , Spectroscopy, Near-Infrared/methods , Temperature , Glucosides/analysis , Glucosides/chemistry , Caffeic Acids
12.
Heliyon ; 10(13): e33437, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040373

ABSTRACT

Background: Non-invasive prenatal tests (NIPT) are used to screen for trisomy 21, 18, and 13. This study investigated NIPT performance and the clinical significance of its results. Methods: Pregnant women (n = 282,911) participating in a free NIPT (April 2018-December 2021) were screened for common trisomies, and the results were retrospectively analyzed. NIPT performance was evaluated by its positive predictive value (PPV), sensitivity, and specificity. Results were analyzed using number, percentage, and chi-squared/t-test analyses. Results: After NIPT screening, patients with common trisomies (n = 746) included 457 with T21, 160 with T18, and 129 with T13. Seven false negative cases were identified. High PPV (86.81 %, 56.81 %, 18.18 %), sensitivity (99.25 %, 98.33 %, 100.00 %), and specificity (99.98 %, 99.98 %, 99.97 %) values were detected for trisomy 21, 18, and 13, respectively. The PPVs of common trisomies were significantly different between pregnant women older than 35 (85.53 %, 136/159) and those aged 35 or younger (58.90 %, 311/528) (χ2 = 125.02, P = 2.20e-16). As the NIPT uptake increased from 2018 to 2021, live-born birth defect incidence decreased. Conclusion: NIPT performed well in screening for T21, T18, and T13. Our discoveries offer an important and useful guideline in laboratory and clinical genetic counseling.

13.
Eur J Pharm Sci ; : 106851, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009286

ABSTRACT

Tenofovir disoproxil fumarate (TDF), a prodrug of tenofovir(TFV), is an effective drug in treating patients infected with human immunodeficiency virus(HIV). Previous population pharmacokinetics(PPK) studies have showed the large variabilities in PK of TFV. Furthermore, limited information was known in Chinese populations. Therefore, the aim of this study was to characterize PPK of TDF in Chinese and identify factors that may affect its PK. TFV concentrations (n = 552) from 30 healthy subjects and 162 HIV-infected Chinese adult patients were pooled for PPK analysis by a nonlinear mixed-effects method. The PK of TFV was adequately described as a two-compartment model with first order absorption and elimination. The typical apparent clearance(CL/F) of TFV in 70-kg adults was 137 L/h, higher than that reported in Caucasians and Blacks(45.8-93L/h). Estimated glomerular filtration rate was identified to be a significant factor influencing CL/F. Monte Carlo simulation showed that the exposure of standard dosing regimen of TDF 300mg every 24 hours in Chinese people with mild renal impairment(60 to 90 ml/min/1.73m2) was close to that in individuals with normal renal function(90 mL/min). Dose adjustment is not required for patients with mild renal impairment. Our study might offer new clues for optimal dosing strategies in Chinese patients with HIV-infected.

14.
J Rheumatol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009401

ABSTRACT

The Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA)-Outcome Measures in Rheumatology (OMERACT) psoriatic arthritis (PsA) working group provided updates at the GRAPPA 2023 annual meeting on its work to evaluate composite outcome measures for PsA. An ongoing systematic literature review is in progress to evaluate psychometric measurement properties using the OMERACT filter 2.2 for a list of candidate composite outcome measures, which include minimal disease activity (MDA), Disease Activity for Psoriatic Arthritis (DAPSA), American College of Rheumatology (ACR) response criteria, Psoriatic Arthritis Disease Activity Score (PASDAS), Composite Psoriatic Disease Activity Index (CPDAI), 3 visual analog scale (3VAS), and 4VAS. The performance of the 3VAS and 4VAS in clinical practice and a synthesis of new data were presented, including estimates for minimal clinically important differences and thresholds of meaning, discrimination and construct validity, and longitudinal construct validity. Numeric rating scale (NRS) versions of the VAS have also been tested. Performance characteristics and psychometric properties are similar to the ASSESS study, a UK multicenter study, indicating that the VAS scales may be feasible tools for routine clinical care with a preference for the 4VAS because of superior face validity and clinical utility.

15.
Biomed Environ Sci ; 37(6): 594-606, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988110

ABSTRACT

Objective: The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats ( C6orf120 -/- ) and THP-1 cells. Method: Six-eight-week-old C6orf120 -/- and wild-type (WT) SD rats were injected with Con A (16 mg/kg), and euthanized after 24 h. The sera, livers, and spleens were collected. THP-1 cells and the recombinant protein (rC6ORF120) were used to explore the mechanism in vitro. The frequency of M1 and M2 macrophages was analyzed using flow cytometry. Western blotting and PCR were used to detect macrophage polarization-associated factors. Results: C6orf120 knockout attenuated Con A-induced autoimmune hepatitis. Flow cytometry indicated that the proportion of CD68 +CD86 +M1 macrophages from the liver and spleen in the C6orf120 -/- rats decreased. C6orf120 knockout induced downregulation of CD86 protein and the mRNA levels of related inflammatory factors TNF-α, IL-1ß, and IL-6 in the liver. C6orf120 knockout did not affect the polarization of THP-1 cells. However, rC6ORF120 promoted the THP-1 cells toward CD68 +CD80 +M1 macrophages and inhibited the CD68 +CD206 +M2 phenotype. Conclusion: C6orf120 knockout alleviates Con A-induced autoimmune hepatitis by inhibiting macrophage polarization toward M1 macrophages and reducing the expression of related inflammatory factors in C6orf120 -/- rats.


Subject(s)
Concanavalin A , Hepatitis, Autoimmune , Macrophages , Rats, Sprague-Dawley , Animals , Macrophages/drug effects , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/genetics , Rats , Concanavalin A/toxicity , Humans , Male , Gene Knockout Techniques , THP-1 Cells
16.
World J Gastrointest Surg ; 16(6): 1726-1733, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983341

ABSTRACT

BACKGROUND: Endoscopic retrograde cholangiopancreatography (ERCP), with its clinical ad-vantages of less trauma and faster recovery, has become the primary treatment for choledocholithiasis. AIM: To investigate the effects of different ERCP procedures on the sphincter of Oddi. METHODS: The clinical data of 91 patients who underwent ERCP at Yixing Hospital of Traditional Chinese Medicine between February 2018 and February 2021 were analyzed retrospectively. The patients were divided into endoscopic sphincterotomy (EST, n = 24) and endoscopic papillary balloon dilation (EPBD, n = 67) groups. The duration of operation, pancreatic development, pancreatic sphincterotomy, intubation difficulties, stone recurrence, and incidence of reflux cholangitis and cholecystitis were statistically analyzed in patients with a history of choledocholithiasis, pancreatitis, and Oddi sphincter dysfunction in the EST and EPBD groups. RESULTS: Differences in hypertension, diabetes, increased bilirubin, small diameter of the common bile duct, or ampullary diverticulum between the two groups were not significant. Statistically significant differences were observed between the two groups concerning sex and age (< 60 years). Patients with a history of choledocholithiasis, pancreatitis, and Oddi sphincter dysfunction were higher in the EST group than in the EPBD group. The number of cases of pancreatic development, pancreatic duct sphincterotomy, and difficult intubation were higher in the EST group than in the EPBD group. The number of Oddi's sphincter manometries, ERCP surgical outcomes, and guidewires entering the pancreatic duct several times in EST group were lower than those in the EPBD group. The numbers of stone recurrences, reflux cholangitis, and cholecystitis were higher in the EST group than in the EPBD group. CONCLUSION: In summary, common bile duct stones, pancreatitis history, and multiple guided wire introductions into the pancreatic duct are independent risk factors for EST and EPBD. Based on this evidence, this study can provide actionable insights for clinicians and researchers.

17.
Cell Commun Signal ; 22(1): 362, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010102

ABSTRACT

Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.


Subject(s)
Autophagy , Fungal Proteins , Oryza , Fungal Proteins/metabolism , Fungal Proteins/genetics , Oryza/microbiology , Virulence/genetics , Peroxisomes/metabolism , Plant Diseases/microbiology , Ascomycota/pathogenicity , Ascomycota/genetics , Ascomycota/enzymology , MAP Kinase Signaling System , Oxidative Stress
18.
World J Clin Cases ; 12(20): 4272-4288, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015929

ABSTRACT

BACKGROUND: Education, cognition, and intelligence are associated with cholelithiasis occurrence, yet which one has a prominent effect on cholelithiasis and which cardiometabolic risk factors mediate the causal relationship remain unelucidated. AIM: To explore the causal associations between education, cognition, and intelligence and cholelithiasis, and the cardiometabolic risk factors that mediate the associations. METHODS: Applying genome-wide association study summary statistics of primarily European individuals, we utilized two-sample multivariable Mendelian randomization to estimate the independent effects of education, intelligence, and cognition on cholelithiasis and cholecystitis (FinnGen study, 37041 and 11632 patients, respectively; n = 486484 participants) and performed two-step Mendelian randomization to evaluate 21 potential mediators and their mediating effects on the relationships between each exposure and cholelithiasis. RESULTS: Inverse variance weighted Mendelian randomization results from the FinnGen consortium showed that genetically higher education, cognition, or intelligence were not independently associated with cholelithiasis and cholecystitis; when adjusted for cholelithiasis, higher education still presented an inverse effect on cholecystitis [odds ratio: 0.292 (95%CI: 0.171-0.501)], which could not be induced by cognition or intelligence. Five out of 21 cardiometabolic risk factors were perceived as mediators of the association between education and cholelithiasis, including body mass index (20.84%), body fat percentage (40.3%), waist circumference (44.4%), waist-to-hip ratio (32.9%), and time spent watching television (41.6%), while time spent watching television was also a mediator from cognition (20.4%) and intelligence to cholelithiasis (28.4%). All results were robust to sensitivity analyses. CONCLUSION: Education, cognition, and intelligence all play crucial roles in the development of cholelithiasis, and several cardiometabolic mediators have been identified for prevention of cholelithiasis due to defects in each exposure.

19.
Org Lett ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39029092

ABSTRACT

Chiral coumarins and their derivatives are ubiquitous structural motifs found in an array of biologically and therapeutically active natural products and drugs. Herein, a highly enantioselective dual remote copper-catalyzed vinylogous alkynylallylic substitution of yne-allylic esters with coumarins has been developed. The practicality of this method is exemplified by the use of readily available starting materials; mild reaction conditions; excellent regio-, enantio-, and stereoselectivities; and the very broad substrate scope (67 examples), while the scalability and further applications of this method are illustrated by the gram-scale reaction and the series of derivations of the products.

20.
J Infect Dis ; 230(1): 5-14, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052699

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a variety of clinical manifestations, many of which originate from altered immune responses, either locally or systemically. Immune cell cross-talk occurs mainly in lymphoid organs. However, systemic cell interaction specific to coronavirus disease 2019 has not been well characterized. Here, by employing single-cell RNA sequencing and imaging flow cytometry analysis, we unraveled, in peripheral blood, a heterogeneous group of cell complexes formed by the adherence of CD14+ monocytes to different cytotoxic lymphocytes, including SARS-CoV-2-specific CD8+ T cells, γδ T cells, and natural killer T cells. These lymphocytes attached to CD14+ monocytes that showed enhanced inflammasome activation and pyroptosis-induced cell death in progression stage; in contrast, in the convalescent phase, CD14+ monocytes with elevated antigen presentation potential were targeted by cytotoxic lymphocytes, thereby restricting the excessive immune activation. Collectively, our study reports previously unrecognized cell-cell interplay in the SARS-CoV-2-specific immune response, providing new insight into the intricacy of dynamic immune cell interaction representing antiviral defense.


Subject(s)
COVID-19 , Monocytes , SARS-CoV-2 , T-Lymphocytes, Cytotoxic , Humans , COVID-19/immunology , COVID-19/virology , Monocytes/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , CD8-Positive T-Lymphocytes/immunology , Lipopolysaccharide Receptors/metabolism , Inflammasomes/immunology , Pyroptosis/immunology , Natural Killer T-Cells/immunology , Male , Cell Communication/immunology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...