Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Conserv Biol ; : e14261, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571408

ABSTRACT

Amid a global infrastructure boom, there is increasing recognition of the ecological impacts of the extraction and consumption of construction minerals, mainly processed as concrete, including significant and expanding threats to global biodiversity. We investigated how high-level national and international biodiversity conservation policies address mining threats, with a special focus on construction minerals. We conducted a review and quantified the degree to which threats from mining these minerals are addressed in biodiversity goals and targets under the 2011-2020 and post-2020 biodiversity strategies, national biodiversity strategies and action plans, and the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Mining appeared rarely in national targets but more frequently in national strategies. Yet, in most countries, it was superficially addressed. Coverage of aggregates mining was greater than coverage of limestone mining. We outline 8 key components, tailored for a wide range of actors, to effectively mainstream biodiversity conservation into the extractive, infrastructure, and construction sectors. Actions include improving reporting and monitoring systems, enhancing the evidence base around mining impacts on biodiversity, and modifying the behavior of financial agents and businesses. Implementing these measures could pave the way for a more sustainable approach to construction mineral use and safeguard biodiversity.


Amenazas de la minería a las políticas de alto nivel para la conservación de la biodiversidad Resumen Enmedio del auge global del desarrollo de infraestructura, hay un mayor reconocimiento de los impactos ecológicos de la extracción y consumo de materiales para construcción, procesados predominantemente como concreto. Estos materiales representan amenazas significativas y en expansión para la biodiversidad global. Investigamos cómo son abordadas las amenazas de la minería por las políticas nacionales e internacionales de alto nivel para la conservación de la biodiversidad, con enfoque especial en los minerales para construcción. Realizamos una revisión exhaustiva y cuantificamos el grado en el cual son abordadas las amenazas de la extracción de estos minerales en los objetivos y metas para la biodiversidad bajo estrategias 2011­2020 y post 2020, las estrategias y planes de acción nacionales para la biodiversidad, y las evaluaciones de la Plataforma Intergubernamental Científico­normativa sobre Diversidad Biológica y Servicios de los Ecosistemas. La minería raramente apareció en los objetivos nacionales, pero fue más frecuente en las estrategias nacionales. Sin embargo, fue abordada superficialmente en la mayoría de los países. La cobertura de minería de agregados fue mayor que la cobertura de la minería de caliza. Describimos ocho componentes clave, adaptados para una amplia gama de actores, para incorporar eficazmente la conservación de la biodiversidad en los sectores extractivo, desarrollo de infraestructura y construcción. Las acciones incluyen la mejora de los sistemas de informes y monitoreo, el reforzamiento de la base de evidencias en torno a los impactos de la minería sobre la biodiversidad y la modificación del comportamiento de los agentes financieros y comerciales. La implementación de estas medidas podría allanar el camino para un enfoque más sostenible en el uso de minerales para la construcción y la salvaguarda de la biodiversidad.

2.
Antimicrob Agents Chemother ; 67(4): e0149922, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36892280

ABSTRACT

Three soluble single-domain fragments derived from the unique variable region of camelid heavy-chain antibodies (VHHs) against the CMY-2 ß-lactamase behaved as inhibitors. The structure of the complex VHH cAbCMY-2(254)/CMY-2 showed that the epitope is close to the active site and that the CDR3 of the VHH protrudes into the catalytic site. The ß-lactamase inhibition pattern followed a mixed profile with a predominant noncompetitive component. The three isolated VHHs recognized overlapping epitopes since they behaved as competitive binders. Our study identified a binding site that can be targeted by a new class of ß-lactamase inhibitors designed on the sequence of the paratope. Furthermore, the use of mono- or bivalent VHH and rabbit polyclonal anti-CMY-2 antibodies enables the development of the first generation of enzyme-linked immunosorbent assay (ELISA) for the detection of CMY-2 produced by CMY-2-expressing bacteria, irrespective of resistotype.


Subject(s)
Single-Domain Antibodies , Animals , Rabbits , Precision Medicine , beta-Lactamases/genetics , beta-Lactamases/chemistry , beta-Lactamase Inhibitors , Penicillins , Antibodies , Epitopes
3.
Sci Rep ; 12(1): 12918, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902622

ABSTRACT

Deep-habitat cetaceans are generally difficult to study, leading to a limited knowledge of their population. This paper assesses the differential distribution patterns of three deep-habitat cetaceans (Sperm whale-Physeter macrocephalus, Risso's dolphin-Grampus griseus & Cuvier's beaked whale-Ziphius cavirostris). We used data of 842 opportunistic sightings of cetaceans in the western Mediterranean sea. We inferred environmental and spatio-temporal factors that affect their distribution. Binary logistic regression models were generated to compare the presence of deep-habitat cetaceans with the presence of other cetacean species in the dataset. Then, the favourability function was applied, allowing for comparison between all the models. Sperm whale and Risso's dolphin presence was differentially favoured by the distance to towns in the eastern part of the western Mediterranean sea. The differential distribution of sperm whale was also influenced by the stability of SST, and that of the Risso's dolphin by lower mean salinity and higher mean Chlorophyll A concentration. When modelling the three deep-habitat cetaceans (including Cuvier's beaked whale), the variable distance to towns had a negative influence on the presence of any of them more than it did to other cetaceans, being more favourable far from towns, so this issue should be further investigated.


Subject(s)
Dolphins , Animals , Chlorophyll A , Ecosystem , Mediterranean Sea , Sperm Whale , Whales
4.
Syst Biol ; 71(2): 286-300, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34259868

ABSTRACT

Understanding the factors that cause heterogeneity among gene trees can increase the accuracy of species trees. Discordant signals across the genome are commonly produced by incomplete lineage sorting (ILS) and introgression, which in turn can result in reticulate evolution. Species tree inference using the multispecies coalescent is designed to deal with ILS and is robust to low levels of introgression, but extensive introgression violates the fundamental assumption that relationships are strictly bifurcating. In this study, we explore the phylogenomics of the iconic Liolaemus subgenus of South American lizards, a group of over 100 species mostly distributed in and around the Andes mountains. Using mitochondrial DNA (mtDNA) and genome-wide restriction site-associated DNA sequencing (RADseq; nDNA hereafter), we inferred a time-calibrated mtDNA gene tree, nDNA species trees, and phylogenetic networks. We found high levels of discordance between mtDNA and nDNA, which we attribute in part to extensive ILS resulting from rapid diversification. These data also reveal extensive and deep introgression, which combined with rapid diversification, explain the high level of phylogenetic discordance. We discuss these findings in the context of Andean orogeny and glacial cycles that fragmented, expanded, and contracted species distributions. Finally, we use the new phylogeny to resolve long-standing taxonomic issues in one of the most studied lizard groups in the New World.[Andes; ddRADSeq; introgression; lizards; mtDNA; reptiles; SNPs.].


Subject(s)
Lizards , Animals , DNA, Mitochondrial/genetics , Genome , Lizards/genetics , Phylogeny , South America
5.
Anal Chem ; 93(40): 13606-13614, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34585567

ABSTRACT

Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.


Subject(s)
Biosensing Techniques , Toxocara canis , Toxocariasis , Animals , Electrochemical Techniques , Humans , Immunoassay , Limit of Detection , Oxidation-Reduction
6.
Polymers (Basel) ; 13(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922410

ABSTRACT

Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 µg/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 µg/mL) was lower than Chitosan-P (31.2 µg/mL) and EGCG (500 µg/mL) against Pseudomonas fluorescens (p < 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p < 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p < 0.05) in 2,2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.

7.
PeerJ ; 9: e10506, 2021.
Article in English | MEDLINE | ID: mdl-33505784

ABSTRACT

Vibrio parahaemolyticus (Vp), a typical microorganism inhabiting marine ecosystems, uses pathogenic virulence molecules such as hemolysins to cause bacterial infections of both human and marine animals. The thermolabile hemolysin VpTLH lyses human erythrocytes by a phospholipase B/A2 enzymatic activity in egg-yolk lecithin. However, few studies have been characterized the biochemical properties and the use of VpTLH as a molecular target for natural compounds as an alternative to control Vp infection. Here, we evaluated the biochemical and inhibition parameters of the recombinant VpTLH using enzymatic and hemolytic assays and determined the molecular interactions by in silico docking analysis. The highest enzymatic activity was at pH 8 and 50 °C, and it was inactivated by 20 min at 60 °C with Tm = 50.9 °C. Additionally, the flavonoids quercetin, epigallocatechin gallate, and morin inhibited the VpTLH activity with IC50 values of 4.5 µM, 6.3 µM, and 9.9 µM, respectively; while phenolics acids were not effective inhibitors for this enzyme. Boltzmann and Arrhenius equation analysis indicate that VpTLH is a thermolabile enzyme. The inhibition of both enzymatic and hemolytic activities by flavonoids agrees with molecular docking, suggesting that flavonoids could interact with the active site's amino acids. Future research is necessary to evaluate the antibacterial activity of flavonoids against Vp in vivo.

8.
Ecol Lett ; 24(1): 27-37, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33022129

ABSTRACT

While epizootics increasingly affect wildlife, it remains poorly understood how the environment shapes most host-pathogen systems. Here, we employ a three-step framework to study microclimate influence on ectotherm host thermal behaviour, focusing on amphibian chytridiomycosis in fire salamanders (Salamandra salamandra) infected with the fungal pathogen Batrachochytrium salamandrivorans (Bsal). Laboratory trials reveal that innate variation in thermal preference, rather than behavioural fever, can inhibit infection and facilitate salamander recovery under humidity-saturated conditions. Yet, a 3-year field study and a mesocosm experiment close to the invasive Bsal range show that microclimate constraints suppress host thermal behaviour favourable to disease control. A final mechanistic model, that estimates range-wide, year-round host body temperature relative to microclimate, suggests that these constraints are rule rather than exception. Our results demonstrate how innate host defences against epizootics may remain constrained in the wild, which predisposes to range-wide disease outbreaks and population declines.


Subject(s)
Chytridiomycota , Mycoses , Amphibians , Animals , Microclimate , Mycoses/prevention & control , Mycoses/veterinary , Urodela
9.
Int J Biol Macromol ; 164: 2701-2710, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32827617

ABSTRACT

Trypsins (E.C. 3.4.21.4) are digestive enzymes that catalyze the hydrolysis of peptide bonds containing arginine and lysine residues. Some trypsins from fish species are active at temperatures just above freezing, and for that are called cold-adapted enzymes, having many biotechnological applications. In this work, we characterized a recombinant trypsin-III from Monterey sardine (Sardinops caeruleus) and studied the role of a single residue on its cold-adapted features. The A236N mutant from sardine trypsin-III showed higher activation energy for the enzyme-catalyzed reaction, it was more active at higher temperatures, and exhibited a higher thermal stability than the wild-type enzyme, suggesting a key role of this residue. The thermodynamic activation parameters revealed an increase in the activation enthalpy for the A236N mutant, suggesting the existence of more intramolecular contacts during the activation step. Molecular models for both enzymes suggest that a hydrogen-bond involving N236 may contact the C-terminal α-helix to the vicinity of the active site, thus affecting the biochemical and thermodynamic properties of the enzyme.


Subject(s)
Fishes/metabolism , Mutation , Trypsin/chemistry , Trypsin/genetics , Animals , Cold Temperature , Enzyme Activation , Enzyme Stability , Fish Proteins/chemistry , Fish Proteins/genetics , Fishes/genetics , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Protein Structure, Secondary
10.
Dev Comp Immunol ; 113: 103807, 2020 12.
Article in English | MEDLINE | ID: mdl-32735961

ABSTRACT

Lysozymes play a key role in innate immune response to bacterial pathogens, catalyzing the hydrolysis of the peptidoglycan layer of bacterial cell walls. In this study, the genes encoding the c-type (TmLyzc) and g-type (TmLyzg) lysozymes from Totoaba macdonaldi were cloned and characterized. The cDNA sequences of TmLyzg and TmLyzc were 582 and 432 bp, encoding polypeptides of 193 and 143 amino acids, respectively. Amino acid sequences of these lysozymes shared high identity (60-90%) with their counterparts of other teleosts and showed conserved functional-structural signatures of the lysozyme superfamily. Phylogenetic analysis indicated a close relationship with their vertebrate homologues but distinct evolutionary paths for each lysozyme. Expression analysis by qRT-PCR revealed that TmLyzc was expressed in stomach and pyloric caeca, while TmLyzg was highly expressed in stomach and heart. These results suggest that both lysozymes play important roles in defense of totoaba against bacterial infections or as digestive enzyme.


Subject(s)
Anti-Bacterial Agents/metabolism , Fish Proteins/genetics , Fishes/immunology , Gastric Mucosa/metabolism , Muramidase/genetics , Myocardium/metabolism , Animals , Chickens/genetics , Cloning, Molecular , Digestion , Evolution, Molecular , Fish Proteins/metabolism , Geese/genetics , Gene Expression Profiling , Immunity, Innate , Muramidase/metabolism , Organ Specificity , Phylogeny , Sequence Alignment
11.
Parasit Vectors ; 13(1): 245, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32398157

ABSTRACT

BACKGROUND: The diagnosis of active Toxocara canis infections in humans is challenging. Larval stages of T. canis do not replicate in human tissues and disease may result from infection with a single T. canis larva. Recently, we developed a nanobody-based electrochemical magnetosensor assay with superior sensitivity to detect T. canis excretory-secretory (TES) antigens. Here, we evaluate the performance of the assay in children from an Ecuadorian birth cohort that followed children to five years of age. METHODS: Samples were selected based on the presence of peripheral blood eosinophilia and relative eosinophil counts. The samples were analyzed by the nanobody-based electrochemical magnetosensor assay, which utilizes a bivalent biotinylated nanobody as capturing agent on the surface of streptavidin pre-coated paramagnetic beads. Detection was performed by a different nanobody chemically labelled with horseradish peroxidase. RESULTS: Of 87 samples tested, 33 (38%) scored positive for TES antigen recognition by the electrochemical magnetosensor assay. The average concentration of TES antigen in serum was 2.1 ng/ml (SD = 1.1). The positive result in the electrochemical assay was associated with eosinophilia > 19% (P = 0.001). Parasitological data were available for 57 samples. There was no significant association between positivity by the electrochemical assay and the presence of other soil-transmitted helminth infections. CONCLUSIONS: Our nanobody-based electrochemical assay provides highly sensitive quantification of TES antigens in serum and has potential as a valuable tool for the diagnosis of active human toxocariasis.


Subject(s)
Antigens, Helminth/blood , Electrochemical Techniques/methods , Eosinophilia/parasitology , Helminth Proteins/blood , Single-Domain Antibodies/immunology , Toxocariasis/diagnosis , Animals , Biotinylation , Camelidae , Child, Preschool , Ecuador/epidemiology , Eosinophilia/epidemiology , Humans , Immunomagnetic Separation , Infant , Rural Population , Toxocara canis , Toxocariasis/epidemiology
12.
Anal Chem ; 91(18): 11582-11588, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31429269

ABSTRACT

Human toxocariasis (HT) is a cosmopolitan zoonotic disease caused by the migration of the larval stage of the roundworm Toxocara canis. Current HT diagnostic methods do not discriminate between active and past infections. Here, we present a method to quantify Toxocara excretory/secretory antigen, aiming to identify active cases of HT. High specificity is achieved by employing nanobodies (Nbs), single domain antigen binding fragments from camelid heavy chain-only antibodies. High sensitivity is obtained by the design of an electrochemical magnetosensor with an amperometric read-out. Reliable detection of TES antigen at 10 and 30 pg/mL level was demonstrated in phosphate buffered saline and serum, respectively. Moreover, the assay showed no cross-reactivity with other nematode antigens. To our knowledge, this is the most sensitive method to quantify the TES antigen so far. It also has great potential to develop point of care diagnostic systems in other conditions where high sensitivity and specificity are required.


Subject(s)
Antigens, Helminth/analysis , Electrochemical Techniques/methods , Single-Domain Antibodies/immunology , Toxocara canis/chemistry , Animals , Antigens, Helminth/immunology , Camelidae , Immunomagnetic Separation , Limit of Detection
13.
Int J Parasitol ; 49(8): 635-645, 2019 07.
Article in English | MEDLINE | ID: mdl-31150611

ABSTRACT

Human toxocariasis is a zoonosis resulting from the migration of larval stages of the dog parasite Toxocara canis into the human paratenic host. Despite its well-known limitations, serology remains the most important tool to diagnose the disease. Our objective was to employ camelid single domain antibody fragments also known as nanobodies (Nbs) for a specific and sensitive detection of Toxocara canis excretory/secretory (TES) antigens. From an alpaca immune Nb library, we retrieved different Nbs with specificity for TES antigens. Based on ELISA experiments, these Nbs did not show any cross-reactivity with Ascaris lumbricoides, Ascaris suum, Pseudoterranova decipiens, Anisakis simplex and Angiostrongylus cantonensis larval antigens. Western blot and immunocapturing revealed that Nbs 1TCE39, 1TCE52 and 2TCE49 recognise shared epitopes on different components of TES antigen. The presence of disulphide bonds in the target antigen seems to be essential for recognition of the epitopes by these three Nbs. Three separate sandwich ELISA formats, using monovalent and bivalent Nbs, were assessed to maximise the detection of TES antigens in solution. The combination of biotinylated, bivalent Nb 2TCE49 on a streptavidin pre-coated plate to capture TES antigens, and Nb 1TCE39 chemically coupled to horseradish peroxidase for detection of the captured TES antigens, yielded the most sensitive ELISA with a limit of detection of 0.650 ng/ml of TES antigen, spiked in serum. Moreover, the assay was able to detect TES antigens in sera from mice, taken 3 days after the animals were experimentally infected with T. canis. The specific characteristics of Nbs make this ELISA not only a promising tool for the detection of TES antigens in clinical samples, but also for a detailed structural and functional study of TES antigens.


Subject(s)
Antigens, Helminth/analysis , Single-Domain Antibodies/immunology , Toxocara canis/immunology , Animals , Antibodies, Helminth/immunology , Blotting, Western , Camelids, New World , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mice , Microspheres , Plasmids , Polymerase Chain Reaction
14.
J Anim Ecol ; 88(2): 247-257, 2019 02.
Article in English | MEDLINE | ID: mdl-30303530

ABSTRACT

Research addressing the effects of global warming on the distribution and persistence of species generally assumes that population variation in thermal tolerance is spatially constant or overridden by interspecific variation. Typically, this rationale is implicit in sourcing one critical thermal maximum (CTmax ) population estimate per species to model spatiotemporal cross-taxa variation in heat tolerance. Theory suggests that such an approach could result in biased or imprecise estimates and forecasts of impact from climate warming, but limited empirical evidence in support of those expectations exists. We experimentally quantify the magnitude of intraspecific variation in CTmax among lizard populations, and the extent to which incorporating such variability can alter estimates of climate impact through a biophysical model. To do so, we measured CTmax from 59 populations of 15 Iberian lizard species (304 individuals). The overall median CTmax across all individuals from all species was 42.8°C and ranged from 40.5 to 48.3°C, with species medians decreasing through xeric, climate-generalist and mesic taxa. We found strong statistical support for intraspecific differentiation in CTmax by up to a median of 3°C among populations. We show that annual restricted activity (operative temperature > CTmax ) over the Iberian distribution of our study species differs by a median of >80 hr per 25-km2 grid cell based on different population-level CTmax estimates. This discrepancy leads to predictions of spatial variation in annual restricted activity to change by more than 20 days for six of the study species. Considering that during restriction periods, reptiles should be unable to feed and reproduce, current projections of climate-change impacts on the fitness of ectotherm fauna could be under- or over-estimated depending on which population is chosen to represent the physiological spectra of the species in question. Mapping heat tolerance over the full geographical ranges of single species is thus critical to address cross-taxa patterns and drivers of heat tolerance in a biologically comprehensive way.


Subject(s)
Lizards , Thermotolerance , Animals , Climate , Climate Change , Global Warming
15.
Zootaxa ; 4441(3): 447-466, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-30313995

ABSTRACT

Species delimitation in Phymaturus has been a difficult task due to the highly conserved morphological and ecological features present in this genus. Almost all species of Phymaturus have been described without DNA data or lacking statistical analyses which makes even more difficult to compare species. Although two molecular phylogenetic studies have been recently published, here we provide the first multilocus phylogenetic reconstruction including all Chilean species, with samples from all type localities and some previously unsampled populations. We also estimate pairwise distances among the Chilean species of Phymaturus (P. vociferator and P. mallimaccii clades) and compare our results with the P. payuniae clade, where previous studies have used multiple lines of evidence. Additionally, we performed univariate and multivariate morphological analyses and skeletal comparisons (clavicle) for the species of the P. vociferator clade. As a result of this integrative approach, we describe a new species.


Subject(s)
Lizards , Phylogeny , Animals , Chile , Ecology
16.
Parasit Vectors ; 10(1): 470, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29017602

ABSTRACT

BACKGROUND: Species of Schellackia Reichenow, 1919 have been described from the blood of reptiles distributed worldwide. Recently, Schellackia spp. detected in European and Asian lizards have been molecularly characterised. However, parasites detected in American lizard hosts remain uncharacterised. Thus, phylogenetic affinities between the Old and New World parasite species are unknown. METHODS: In the present study, we characterised morphologically and molecularly the hemococcidian parasites (sporozoites) that infect three lizard hosts from North America and two from South America. RESULTS: In total, we generated 12 new 18S rRNA gene sequences of hemococcidian parasites infecting New World lizard hosts. By the microscopic examination of the smears we identified Schellackia golvani Rogier & Landau, 1975 (ex Anolis carolinensis Voigt) and Schellackia occidentalis Bonorris & Ball, 1955 (ex Uta stansburiana Baird & Girard and Sceloporus occidentalis Baird & Girard) in some samples, but the phylogenetic analysis indicated that all 18S rDNA sequences are distant from Schellackia species found in Old World lizards. In fact, the hemococcidian parasites detected in the New World lizards (including S. occidentalis and S. golvani) were closely related to the genus Lankesterella Labbé, 1899. Consequently, we suggest these two species to be included within the genus Lankesterella. CONCLUSIONS: Life history traits of hemococcidian parasites such as the type of host blood cells infected, host species or number of refractile bodies are not valid diagnostic characteristics to differentiate the parasites between the genera Schellackia and Lankesterella. Indeed, lankesterellid parasites with a different number of refractile bodies had a close phylogenetic origin. Based on the phylogenetic results we provide a systematic revision of the North American hemococcidians. Our recommendation is to include the species formerly described in the genus Schellackia that infect American lizards into Lankesterella (Lankesterellidae) as Lankesterella golvani (Rogier & Landau, 1975) n. comb and L. occidentalis (Bonorris & Ball, 1955) n. comb.


Subject(s)
Apicomplexa/classification , Apicomplexa/genetics , Lizards/parasitology , Phylogeny , Protozoan Infections, Animal/epidemiology , Animals , DNA, Ribosomal/genetics , Eucoccidiida/parasitology , Host Specificity , North America/epidemiology , Protozoan Infections, Animal/blood , Protozoan Infections, Animal/parasitology , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , South America/epidemiology , United States/epidemiology
17.
Protein Expr Purif ; 137: 64-76, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28668496

ABSTRACT

The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli , Peptidylprolyl Isomerase/chemistry , Single-Domain Antibodies , Animals , Camelus , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Peptidylprolyl Isomerase/antagonists & inhibitors , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Single-Domain Antibodies/isolation & purification
18.
Curr Pharm Des ; 22(43): 6500-6518, 2016.
Article in English | MEDLINE | ID: mdl-27669966

ABSTRACT

BACKGROUND: The discovery of functional heavy chain-only antibodies devoid of light chains in sera of camelids and sharks in the early nineties provided access to the generation of minimal-sized, single-domain, in vivo affinity-matured, recombinant antigenbinding fragments, also known as Nanobodies. METHODS: Recombinant DNA technology and adaptation of phage display vectors form the basis to construct large naïve, synthetic or medium sized immune libraries from where multiple Nanobodies have been retrieved. Alternative selection methods (i.e. bacterial display, bacterial two-hybrid, Cis-display and ribosome display) have also been developed to identify Nanobodies. The antigen affinity, stability, expression yields and structural details of the Nanobodies have been determined by standard technology. Nanobodies were subsequently engineered for higher stability and affinity, to have a sequence closer to that of human immunoglobulin domains, or to add designed effector functions. RESULTS: Antigen specific Nanobodies recognizing with high affinity their cognate antigen were retrieved from various libraries. High expression yields are obtained from microorganisms, even when expressed in the cytoplasm. The purified Nanobodies are shown to possess beneficial biochemical and biophysical properties. The crystal structure of Nanobody::antigen complexes reveal the preference of Nanobodies for cavities on the antigen surface. CONCLUSION: Thanks to the properties described above, Nanobodies became a highly valued and versatile tool for biomolecular research. Moreover, numerous diagnostic and therapeutic Nanobody-based applications have been developed in the past decade.


Subject(s)
Bacteriophages/genetics , Peptide Library , Single-Domain Antibodies/immunology , Animals , Camelus , Humans , Single-Domain Antibodies/genetics
20.
J Bioenerg Biomembr ; 47(5): 431-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26315341

ABSTRACT

Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 µM, 3.6 s(-1)), dTDP (251 µM, 0.9 s(-1)) and ATP (92 µM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 µM) and dTDP (10 µM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 µM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.


Subject(s)
Nucleoside-Phosphate Kinase/chemistry , Open Reading Frames , Viral Proteins/chemistry , White spot syndrome virus 1/enzymology , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Nucleoside-Phosphate Kinase/genetics , Protein Structure, Tertiary , Substrate Specificity/physiology , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , White spot syndrome virus 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...