Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Travel Med Infect Dis ; 49: 102360, 2022.
Article in English | MEDLINE | ID: mdl-35644475

ABSTRACT

Surveillance is a critical component of any dengue prevention and control program. There is an increasing effort to use drones in mosquito control surveillance. Due to the novelty of drones, data are scarce on the impact and acceptance of their use in the communities to collect health-related data. The use of drones raises concerns about the protection of human privacy. Here, we show how willingness to be trained and acceptance of drone use in tech-savvy communities can help further discussions in mosquito surveillance. A cross-sectional study was conducted in Malaysia, Mexico, and Turkey to assess knowledge of diseases caused by Aedes mosquitoes, perceptions about drone use for data collection, and acceptance of drones for Aedes mosquito surveillance around homes. Compared with people living in Turkey, Mexicans had 14.3 (p < 0.0001) times higher odds and Malaysians had 4.0 (p = 0.7030) times the odds of being willing to download a mosquito surveillance app. Compared to urban dwellers, rural dwellers had 1.56 times the odds of being willing to be trained. There is widespread community support for drone use in mosquito surveillance and this community buy-in suggests a potential for success in mosquito surveillance using drones. A successful surveillance and community engagement system may be used to monitor a variety of mosquito spp. Future research should include qualitative interview data to add context to these findings.


Subject(s)
Aedes , Dengue , Animals , Cross-Sectional Studies , Dengue/epidemiology , Dengue/prevention & control , Humans , Malaysia , Mexico , Turkey , Unmanned Aerial Devices
2.
Behav Sci (Basel) ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35447666

ABSTRACT

Knowledge of dengue fever and perceived self-efficacy toward dengue prevention does not necessarily translate to the uptake of mosquito control measures. Understanding how these factors (knowledge and self-efficacy) influence mosquito control measures in Mexico is limited. Our study sought to bridge this knowledge gap by assessing individual-level variables that affect the use of mosquito control measures. A cross-sectional survey with 623 participants was administered online in Mexico from April to July 2021. Multiple linear regression and multiple logistic regression models were used to explore factors that predicted mosquito control scale and odds of taking measures to control mosquitoes in the previous year, respectively. Self-efficacy (ß = 0.323, p-value = < 0.0001) and knowledge about dengue reduction scale (ß = 0.316, p-value =< 0.0001) were the most important predictors of mosquito control scale. The linear regression model explained 24.9% of the mosquito control scale variance. Increasing age (OR = 1.064, p-value =< 0.0001) and self-efficacy (OR = 1.020, p-value = 0.0024) were both associated with an increase in the odds of taking measures against mosquitoes in the previous year. There is a potential to increase mosquito control awareness and practices through the increase in knowledge about mosquito reduction and self-efficacy in Mexico.

3.
Sci Rep ; 11(1): 939, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441678

ABSTRACT

Dengue fever is a mosquito-borne disease that affects nearly 3.9 billion people globally. Dengue remains endemic in Malaysia since its outbreak in the 1980's, with its highest concentration of cases in the state of Selangor. Predictors of dengue fever outbreaks could provide timely information for health officials to implement preventative actions. In this study, five districts in Selangor, Malaysia, that demonstrated the highest incidence of dengue fever from 2013 to 2017 were evaluated for the best machine learning model to predict Dengue outbreaks. Climate variables such as temperature, wind speed, humidity and rainfall were used in each model. Based on results, the SVM (linear kernel) exhibited the best prediction performance (Accuracy = 70%, Sensitivity = 14%, Specificity = 95%, Precision = 56%). However, the sensitivity for SVM (linear) for the testing sample increased up to 63.54% compared to 14.4% for imbalanced data (original data). The week-of-the-year was the most important predictor in the SVM model. This study exemplifies that machine learning has respectable potential for the prediction of dengue outbreaks. Future research should consider boosting, or using, nature inspired algorithms to develop a dengue prediction model.


Subject(s)
Dengue/epidemiology , Disease Outbreaks/prevention & control , Forecasting/methods , Aedes , Algorithms , Animals , Climate , Humans , Incidence , Machine Learning , Malaysia/epidemiology , Mosquito Vectors/pathogenicity , Seasons , Temperature , Vector Borne Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...