Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(26): eadn4149, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924413

ABSTRACT

Histone H3 lysine-9 methylation (H3K9me) is a hallmark of the condensed and transcriptionally silent heterochromatin. It remains unclear how H3K9me controls transcription silencing and how cells delimit H3K9me domains to avoid silencing essential genes. Here, using Arabidopsis genetic systems that induce H3K9me2 in genes and transposons de novo, we show that H3K9me2 accumulation paradoxically also causes the deposition of the euchromatic mark H3K36me3 by a SET domain methyltransferase, ASHH3. ASHH3-induced H3K36me3 confers anti-silencing by preventing the demethylation of H3K4me1 by LDL2, which mediates transcriptional silencing downstream of H3K9me2. These results demonstrate that H3K9me2 not only facilitates but orchestrates silencing by actuating antagonistic silencing and anti-silencing pathways, providing insights into the molecular basis underlying proper partitioning of chromatin domains and the creation of metastable epigenetic variation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Silencing , Heterochromatin , Histones , Heterochromatin/metabolism , Heterochromatin/genetics , Histones/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Methylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Lysine/metabolism , Epigenesis, Genetic
2.
J Cell Sci ; 134(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34633046

ABSTRACT

The unicellular alga Cyanidioschyzon merolae has a simple cellular structure; each cell has one nucleus, one mitochondrion, one chloroplast and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner. This article has an associated First Person interview with the first author of the paper.


Subject(s)
CRISPR-Cas Systems , Rhodophyta , CRISPR-Cas Systems/genetics , Cell Nucleus/genetics , Gene Editing , Humans , RNA, Guide, Kinetoplastida
SELECTION OF CITATIONS
SEARCH DETAIL
...