Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 225: 116322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815630

ABSTRACT

Xenobiotic metabolic reactions in the hepatocyte endoplasmic reticulum (ER) including UDP-glucuronosyltransferase and carboxylesterase play central roles in the detoxification of medical agents with small- and medium-sized molecules. Although the catalytic sites of these enzymes exist inside of ER, the molecular mechanism for membrane permeation in the ER remains enigmatic. Here, we investigated that organic anion transporter 2 (OAT2) regulates the detoxification reactions of xenobiotic agents including anti-cancer capecitabine and antiviral zidovudine, via the permeation process across the ER membrane in the liver. Pharmacokinetic studies in patients with colorectal cancer revealed that the half-lives of capecitabine in rs2270860 (1324C > T) variants was 1.4 times higher than that in the C/C variants. Moreover, the hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine in primary cultured human hepatocytes was reduced by OAT2 inhibitor ketoprofen, whereas capecitabine hydrolysis directly assessed in human liver microsomes were not affected. The immunostaining of OAT2 was merged with ER marker calnexin in human liver periportal zone. These results suggested that OAT2 is involved in distribution of capecitabine into ER. Furthermore, we clarified that OAT2 plays an essential role in drug-drug interactions between zidovudine and valproic acid, leading to the alteration in zidovudine exposure to the body. Our findings contribute to mechanistically understanding medical agent detoxification, shedding light on the ER membrane permeation process as xenobiotic metabolic machinery to improve chemical changes in hydrophilic compounds.


Subject(s)
Endoplasmic Reticulum , Humans , Endoplasmic Reticulum/metabolism , Drug Interactions/physiology , Hepatocytes/metabolism , Hepatocytes/drug effects , Male , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Zidovudine/metabolism , Zidovudine/pharmacokinetics , Female , Microsomes, Liver/metabolism
2.
Sci Rep ; 12(1): 21173, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36476676

ABSTRACT

HepG2 cells are widely used as a human hepatocytes model, but their functions, including drug metabolism, are inferior to primary hepatocytes. We previously reported that the hepatic gene expressions in HepG2 cells were upregulated by treatment with zebularine, which is an inhibitor of DNA methylation, through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). In this study, we established a new HepG2 cell subline, HepG2-DP cells, by stable double knockdown of DNMT1 and PKR and evaluated its function. Albumin production, expression of CYP1A2 genes, and accumulation of lipid droplets were increased in HepG2-DP cells compared with the original HepG2 cells. Comprehensive gene expression analysis of transcription factors revealed that the expression of important genes for hepatic function, such as HNF1ß, HNF4α, ONECUT1, FOXA1, FOXA2, FOXA3, and various nuclear receptors, was upregulated in HepG2-DP cells. These results indicate that the newly established HepG2-DP cells are a highly functional hepatocyte cell line. In addition, we investigated whether HepG2-DP cells are able to mature by differentiation induction, since HepG2 cells are derived from hepatoblastoma. The gene expression of major CYPs and Phase II, III drug-metabolizing enzyme genes was significantly increased in HepG2-DP cells cultured in differentiation induction medium. These results suggest that HepG2-DP cells can be further matured by the induction of differentiation and could therefore be applied to studies of drug metabolism and pharmacokinetics.


Subject(s)
Cell Differentiation , Humans , Cell Differentiation/genetics
3.
J Oleo Sci ; 71(11): 1647-1653, 2022.
Article in English | MEDLINE | ID: mdl-36310052

ABSTRACT

Brown adipose tissue (BAT) functions as a radiator for thermogenesis and helps maintain body temperature and regulate metabolism. Inflammatory signals have been reported to inhibit PGC-1α activation and UCP1-mediated thermogenesis in brown adipocytes. Inflammation is mainly caused by cell hypertrophy and macrophage invasion due to obesity, and invading macrophages secrete inflammatory cytokines, including TNF-α, IL1ß, and IL6, which suppress the thermogenesis in BAT. Tocopherol is a lipid-soluble vitamin with anti-inflammatory effects is expected to contribute to the suppression of inflammation in adipose tissue. In this study, we investigated the protective effect of tocopherols, α-tocopherol (α-toc) and δ-tocopherol (δ-toc), against brown adipocyte inflammation and thermogenesis dysfunction.Inflammatory stimulation by TNF-α, a major inflammatory cytokine, significantly decreased the protein expression levels of UCP1 and PGC-1α in rat primary brown adipocytes. The pre-incubation of α-toc or δ-toc significantly suppressed the decrease in UCP1 and PGC-1α expression and lipid accumulation. Additionally, α-toc and δ-toc suppress the induction of ERK1/2 gene expression, implying that an antiinflammatory effect is involved in this protective effect. We fed mice a high-fat diet for 16 weeks and investigated the effects of α-toc and δ-toc in the diet. Intake of α-toc and δ-toc significantly suppressed weight gain and hypertrophy of brown adipocytes. Our results suggest that α-toc and δ-toc suppress the dysfunction of thermogenesis in brown adipocytes due to inflammation and contribute to the treatment of obesity and obesity-related metabolic diseases.


Subject(s)
Adipocytes, Brown , Tumor Necrosis Factor-alpha , Mice , Rats , Animals , Adipocytes, Brown/metabolism , Uncoupling Protein 1/genetics , Tumor Necrosis Factor-alpha/metabolism , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Inflammation/metabolism , Hypertrophy/complications , Hypertrophy/metabolism , Lipids/pharmacology , Mice, Inbred C57BL
4.
Neurosci Res ; 182: 60-64, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35688291

ABSTRACT

We previously reported that mice pups showed individual differences in mother preferences at 16 days old; some pups show high preference to their mother, and other pups show low preference to it. In this study, we examined whether these individual differences were associated with anxiety-like behavior and cognition functions in adulthood. We found that pups showing low mother preference exhibit low anxiety-like behavior and impaired object cognition in adulthood. These results suggest that some behavioral characteristics in adulthood may be associated with the profile of mother preference prior to weaning.


Subject(s)
Behavior, Animal , Mothers , Animals , Anxiety , Female , Humans , Mice , Mice, Inbred C57BL , Weaning
5.
Biol Cell ; 114(9): 225-236, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35603978

ABSTRACT

BACKGROUND INFORMATION: An in vitro evaluation system using cultured hepatocytes is the most useful method in preclinical research, such as drug metabolism and toxicity test. Human hepatocytes should be used in an in vitro evaluation system because the expression of drug-metabolizing enzymes varies among animal species. HepG2 cells, a liver cancer-derived cell line, are widely used as a human hepatocyte model; however, their hepatic functions are generally weak. RESULTS: In this study, we showed that low-density HepG2 cell culture induces hepatic function. The morphology of HepG2 cells was altered depending on the cell density at the time of seeding. Low-density cultured HepG2 cells proliferated as tightly packed colonies. The HepG2 cell colonies in low-density culture demonstrated enhanced tight junction formation. Tight junction protein gene expression levels, such as those of zonula occludens-1 (ZO-1), junctional adhesion molecule 1 (JAM), claudin, occludin, and tricellulin, increased in low-density cultured HepG2 cells. Phases I and II metabolic enzymes, phase III transporter gene expression, and CYP3A4 activity also increased in low-density cultured HepG2 cells. Occludin and tricellulin knockdown inhibited the increased hepatic function in low-density cultures. Tricellulin knockdown reduced the expression of hepatocyte nuclear factor 6 (HNF6), CCAAT/enhancer-binding protein alpha (CEBPA), and aryl hydrocarbon receptor (AHR). In addition, the expression of nuclear receptor subfamily 1 group h member 2 (NR1H2) increased in low-density cultures, canceled by occludin and tricellulin knockdown. CONCLUSIONS: Our results suggest that low-density HepG2 cell cultures enhance hepatic function by promoting tight junction formation and demonstrate the importance of cell density in drug evaluation using hepatocyte cell lines.


Subject(s)
MARVEL Domain Containing 2 Protein , Tight Junctions , Animals , Cell Culture Techniques , Hep G2 Cells , Humans , MARVEL Domain Containing 2 Protein/metabolism , Occludin/genetics , Occludin/metabolism , Tight Junctions/metabolism
6.
J Oleo Sci ; 70(9): 1307-1315, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34373409

ABSTRACT

The study aim was to evaluate the potential anti-inflammatory effects of vitamin E analogs, especially α-tocopherol and δ-tocopherol. We used male C57BL/6JJcl mice, which were divided into four groups: the control (C), high-fat and high-sucrose diet (H), high-fat and high-sucrose diet+α-tocopherol (Ha) and high-fat and high-sucrose diet+δ-tocopherol (Hd) groups. The mice were fed for 16 weeks. To the high-fat and high-sucrose diet, 800 mg/kg of α-tocopherol or δ-tocopherol was added more. The final body weight was significantly higher in the H group than in the C group. On the other hand, the final body weight was drastically lower in the Ha group and Hd group than in the H group. However, the energy intake was not significantly different among all groups. Therefore, we assumed that α-tocopherol and δ-tocopherol have potential anti-obesity effect. Besides, inflammatory cytokine gene expression was significantly higher in the epididymal fat of the H group than in the C group. These results showed that inflammation was induced by epididymal fat of mice fed a high-fat and high-sucrose diet for 16 weeks. Unfortunately, addition of α-tocopherol or δ-tocopherol to the diet did not restrain inflammation of epididymal fat. Investigation of the anti-inflammatory effects of α-tocopherol or δ-tocopherol in co-cultured 3T3-L1 cells and RAW264.7 cells showed that δ-tocopherol inhibited increased gene expression of the inflammatory cytokines, IL-1ß, IL-6, and iNOS. These results suggest that an anti-inflammatory effect in the δ-tocopherol is stronger than that in the α-tocopherol in vitro. We intend to perform an experiment by in vivo sequentially in the future.


Subject(s)
Adipocytes/drug effects , Adipose Tissue/drug effects , Inflammation/drug therapy , Tocopherols/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Anti-Inflammatory Agents , Anti-Obesity Agents , Body Weight/drug effects , Diet, High-Fat/adverse effects , Dietary Sucrose/adverse effects , Gene Expression/drug effects , Inflammation/etiology , Inflammation/genetics , Inflammation Mediators/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Tocopherols/therapeutic use , alpha-Tocopherol/pharmacology , alpha-Tocopherol/therapeutic use
7.
J Oleo Sci ; 70(9): 1317-1323, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34373411

ABSTRACT

This study aimed to determine if there are anti-inflammatory and anti-obesity effects of sweet basil, an herb, in mice. Sweet basil was administered as a powder to male C57BL/6JJcl mice, which were divided into three groups: the (control [C], high-fat and high-sucrose diet [H], and high-fat and high-sucrose diet plus sweet basil powder [HB]) groups. The mice were fed for 12 weeks and the dry sweet basil powder comprised 1% per kg of the diet. From experiment third week, the average body weight was significantly higher in the H group than in the C group. The average body weight was significantly lower in the HB group than in the H group, but food intake did not significantly differ between the H and HB groups. Liver weight was drastically lower in the HB group than in the H group. Perirenal fat weight and epididymal fat weight were not significantly different between the H and HB groups. Therefore, we assumed that body-weight reduction caused by sweet basil powder intake depended on inhibition of liver enlargement. We then examined lipid metabolism-related gene expression in the mice livers. Expression of the sterol response element binding protein 1-c gene tended to be lower in the HB group than in the H group (p=0.056). We speculated that sweet basil inhibited liver enlargement by suppressing fatty acid synthesis. Moreover, expression of the monocyte chemoattractant protein-1 gene in epididymal fat was significantly lower in the HB group than in the H group. Sweet basil powder appears to have a potent anti-inflammatory effect in the adipose tissue of mice fed a high-fat and high-sucrose diet.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Sucrose/administration & dosage , Dietary Sucrose/adverse effects , Dietary Supplements , Ocimum basilicum/chemistry , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Administration, Oral , Animals , Body Weight/drug effects , Gene Expression/drug effects , Hypertrophy/prevention & control , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Organ Size/drug effects , Powders , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
8.
J Oleo Sci ; 70(2): 247-252, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33456009

ABSTRACT

This study aimed to compare the distribution of vitamin E analogs, particularly α-tocopherol and δ-tocopherol, in mice fed with a normal diet and a high-fat and high-sucrose diet separately. We used male C57BL/6JJcl strain mice, which were divided into six groups (control [C], Cα, Cδ, high-fat and high-sucrose [H], Hα, and Hδ groups) and bred for 4 weeks. The additional quantity of α-tocopherol or E-mix D (containing 86.7% δ-tocopherol) into diet was 800 mg/kg diet. The final body weight was significantly higher in the H group than in the C group. However, the effects of vitamin E analog intake had no significant difference, with no synergy between vitamin E and diet. Similar results were obtained in epididymal fat weight. Moreover, α-tocopherol was mainly distributed in the liver in both the Cα group and Hα group, whereas δ-tocopherol mostly accumulated in the epididymal fat, in both the Cδ group and Hδ group. Also, δ-tocopherol was detected in all tissues in both groups. Both the α-tocopherol and δ-tocopherol levels in the epididymal fat were significantly lower in the H group than in the C group. In conclusion, our results suggest that a portion of δ-tocopherol was incorporated into the adipose tissue by chylomicron before arriving at the liver, and then it is metabolized in the liver.


Subject(s)
Adipose Tissue/metabolism , Tocopherols/metabolism , Animals , Chylomicrons/metabolism , Diet, Carbohydrate Loading , Diet, High-Fat , Dietary Sucrose/administration & dosage , Liver/metabolism , Male , Mice, Inbred C57BL , Vitamin E/analogs & derivatives , Vitamin E/metabolism , alpha-Tocopherol/metabolism
9.
J Oleo Sci ; 69(5): 487-493, 2020 May 02.
Article in English | MEDLINE | ID: mdl-32281564

ABSTRACT

Obesity, a lifestyle disease resulting from excessive caloric intake and insufficient physical activity, results in a state of chronic inflammation. A food ingredient that suppresses chronic inflammation could help prevent associated diseases. Sweet basil (Ocimum basilicum L.) is a herb from the Lamiaceae family with some reported anti-inflammatory effects. Via this in vitro study, we aimed to investigate whether sweet basil exerts anti-inflammatory effects in obese patients. Fresh sweet basil leaves were freeze-dried and powered. After that, this was extracted with 80% methanol. After 3T3-L1 adipocytes were cultured with sweet basil extracts at final concentrations of either 5 or 25 µg/mL for 24h, RAW264.7 macrophages were seeded onto this adipocytes and co-cultured for 12h. We determined the effects of sweet basil extracts on inflammatory cytokine expression by real-time PCR or western blotting. Sweet basil extracts reduced the expression of inflammatory cytokine mRNA induced by co-culture, including that of IL-6 (Il6), IL-1ß (Il1b), TNF-α (Tnf), and CCL2 (Ccl2). In addition, sweet basil extracts suppressed the mRNA expression of NF-κB (Nfκb1), a transcription factor of inflammatory cytokines. In an investigation of costimulatory CD137 (Tnfrsf9)/CD137L inflammatory signaling, a member of the TNF super-family, sweet basil extracts inhibited Tnfrsf9 expression induced by the co-culture. Therefore, the results of this study indicated that sweet basil extracts have an anti-inflammatory effect against adipocyte-induced inflammation, possibly through suppression of Tnfrsf9 expression.


Subject(s)
Adipocytes/metabolism , Anti-Inflammatory Agents , Coculture Techniques , Cytokines/metabolism , Inflammation Mediators/metabolism , Ocimum/chemistry , Plant Extracts/pharmacology , 3T3 Cells , Animals , Cytokines/genetics , Gene Expression/drug effects , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , RAW 264.7 Cells , RNA, Messenger/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
10.
Biochem Biophys Res Commun ; 506(1): 53-59, 2018 11 17.
Article in English | MEDLINE | ID: mdl-30336984

ABSTRACT

Activation of thermogenic adipocytes (brown and beige) has been considered an attractive target for weight loss and treatment of metabolic disease. Peroxisome proliferator-activated receptor γ co-activator-1 α (PGC1-α) is a master regulator of thermogenic gene expression in thermogenic adipocytes. We previously reported that α-tocopherol upregulated PGC-1α gene expression and promoted thermogenic adipocyte differentiation in mammalian adipocytes. In this study, we investigated the effects of the vitamin E analogs (α-, γ- and δ-tocopherol) on PGC-1α and uncoupling protein 1 (UCP1) gene expression in 3T3-L1 cells. The expression of PGC-1α and UCP1 increased significantly with the addition of δ-tocopherol. In δ-tocopherol-treated cells, nuclear translocation of PGC-1α increased, as did p38 mitogen-activated protein kinase (MAPK) expression and phosphorylation. Our results suggest that p38 MAPK activation by δ-tocopherol contributes to PGC-1α activation and UCP1 induction.


Subject(s)
Adipocytes, Brown/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Tocopherols/pharmacology , Uncoupling Protein 1/genetics , p38 Mitogen-Activated Protein Kinases/genetics , 3T3-L1 Cells , Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Animals , Cell Differentiation , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytosol/drug effects , Cytosol/metabolism , Gene Expression Regulation , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/agonists , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation/drug effects , Protein Transport/drug effects , Signal Transduction , Uncoupling Protein 1/metabolism , alpha-Tocopherol/pharmacology , gamma-Tocopherol/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
11.
J Oleo Sci ; 66(2): 171-179, 2017.
Article in English | MEDLINE | ID: mdl-28154348

ABSTRACT

Thermogenic adipocytes that are distinct from classical brown adipocytes (beige adipocytes) were identified in 2012. Beige adipocytes are also called inducible brown adipocytes because their differentiation is induced by a number of physiological stimuli, including adrenaline or myokines. PPARγ is the master regulator of adipogenesis and promotes thermogenic adipocyte differentiation. A PPARγ agonist also promotes thermogenic adipocyte differentiation in mouse white adipose tissues. The vitamin E analog α-tocopherol promotes PPARγ expression and induces mRNA expression of target genes. This study investigated the effects of vitamin E analogs on thermogenic adipocyte differentiation in mouse preadipocytes and rat white adipose tissues. We determined the effects of vitamin E analogs (α-tocopherol and γ-tocopherol) on PPARγ, PGC-1α, and uncoupling protein 1 (UCP1) gene expression in 3T3-L1 cells. UCP1 expression and the mitochondrial contents were confirmed in the cells using immunofluorescence. In an in vivo study, male SD-IGS rats were fed a high-fat diet (HFD), α-tocopherol-enriched HFD, or γ-tocopherol-enriched HFD for 8 weeks before the analysis of PPARγ, PGC-1α, UCP1, and CD137 gene expression, and pathological examinations of white adipose tissues. The expression of PPARγ, PGC-1α, and UCP1 increased in 3T3-L1 cells following α-tocopherol treatment in a concentration-dependent manner. UCP1 expression and mitochondrial content also increased in α-tocopherol-treated cells. According to the histopathological examinations of rat white adipose tissues, multilocular cells were observed in the α-tocopherol intake group. Furthermore, the gene expression levels of PGC-1α, UCP1, and CD137 increased in the α-tocopherol intake group. Our results suggest that α-tocopherol promotes thermogenic adipocyte differentiation in mammalian white adipose tissues.


Subject(s)
Adipocytes, Beige/cytology , Adipocytes, Beige/drug effects , Adipose Tissue, White/cytology , Adipose Tissue, White/drug effects , Cell Differentiation/drug effects , alpha-Tocopherol/pharmacology , 3T3-L1 Cells , Animals , Body Weight/drug effects , Cells, Cultured , Diet, High-Fat , Dose-Response Relationship, Drug , Male , Mice , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , RNA, Messenger/drug effects , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Uncoupling Protein 1/genetics , alpha-Tocopherol/administration & dosage
12.
J Clin Biochem Nutr ; 56(2): 143-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25759520

ABSTRACT

Vitamin E analog, such as α- and γ-tocopherol, can undergo ω-oxidation without cleavage of the chroman ring, and this pathway is responsible for generation of the major urinary vitamin E metabolite, carboxyethyl hydroxychroman. However, it is still unclear how carboxyethyl hydroxychroman is changed in various tissues after vitamin E intake. We therefore investigated changes in the concentrations of α- and γ-tocopherol and their metabolites in rat liver and kidney. The concentration of α-tocopherol in rat liver increased until 6 h after oral administration, and then decreased. The change in the concentration of α-carboxyethyl hydroxychroman in rat liver in the α-Toc group slowly increased until 12 h after oral administration. Cytochrome P450 3A1 mRNA expression significantly increased from 12 h after the start of α-tocopherol administration. The change in the concentration of γ-carboxyethyl hydroxychroman in rat liver in the γ-Toc group markedly increased until 12 h after oral administration. On the other hand, γ-carboxyethyl hydroxychroman in rat kidney showed greater accumulation than α-carboxyethyl hydroxychroman from 3 h to 24 h after oral administration. From these results, we considered that γ-carboxyethyl hydroxychroman formed in the liver continues to be released into the bloodstream and is transported to the kidney rapidly.

13.
Mol Biol Cell ; 24(22): 3534-44, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24048449

ABSTRACT

Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) have been implicated in the distribution of sterols among intracellular organelles. OSBP regulates the Golgi cholesterol level, but how it relates to Golgi function is elusive. Here we report that OSBP is essential for the localization of intra-Golgi soluble vesicle N-ethylmaleimide-sensitive fusion attachment protein receptors (v-SNAREs). Depletion of OSBP by small interfering RNA causes mislocalization of intra-Golgi v-SNAREs GS28 and GS15 throughout the cytoplasm without affecting the perinuclear localization of Golgi target-SNARE syntaxin5 and reduces the abundance of a Golgi enzyme, mannosidase II (Man II). GS28 mislocalization and Man II reduction are also induced by cellular cholesterol depletion. Three domains of OSBP-an endoplasmic reticulum-targeting domain, a Golgi-targeting domain, and a sterol-binding domain-are all required for Golgi localization of GS28. Finally, GS28 mislocalization and Man II reduction in OSBP-depleted cells are largely restored by depletion of ArfGAP1, a regulator of the budding of coat protein complex (COP)-I vesicles. From these results, we postulate that Golgi cholesterol level, which is controlled by OSBP, is essential for Golgi localization of intra-Golgi v-SNAREs by ensuring proper COP-I vesicle transport.


Subject(s)
Cholesterol/metabolism , Golgi Apparatus/metabolism , Receptors, Steroid/genetics , SNARE Proteins/genetics , Animals , Coat Protein Complex I/genetics , Coat Protein Complex I/metabolism , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , Golgi Apparatus/ultrastructure , HeLa Cells , Humans , Mannosidases/genetics , Mannosidases/metabolism , Microscopy, Confocal , Mutation , Protein Structure, Tertiary , Protein Transport , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rabbits , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/chemistry , SNARE Proteins/metabolism , Signal Transduction , Transport Vesicles/metabolism , Transport Vesicles/ultrastructure
14.
J Clin Biochem Nutr ; 52(2): 146-53, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23526264

ABSTRACT

It has been reported that α-tocopherol (α-Toc), a vitamin E analog, is effective for treatment of non-alcoholic steatohepatitis (NASH). However, it is unknown whether or not other vitamin E analogs are effective. Therefore we designed a new rat model of steatohepatitis induced by tumor necrosis factor-α (TNF-α) stimulation, and used it to investigate the effects of vitamin E analogs. The rat liver triglyceride content increased with the dosage of TNF-α/d-galactosamine (GalN), but was suppressed by intake of both tocotrienol (T3) and α-tocopherol. Moreover, lipid peroxides (thiobarbituric acid-reactive substances) level in the liver level was also lower in both groups after tocotrienol and α-Toc intake. Intake of both tocotrienol and α-tocopherol also tended to control the increase of liver damage marker activity. In the tocotrienol and α-tocopherol groups, increases of inflammatory cytokines mRNA expression in the liver were inhibited, and these effects were considered to contribute to improvement of inflammation and fibrosis. The expression of mRNAs for inflammatory cytokines in rat primary hepatocytes was increased by TNF-α stimulation, but was inhibited by addition of α-tocotrienol and γ-tocotrienol. Transforming growth factor-ß1 mRNA expression in particular was significantly inhibited by γ-tocotrienol. These findings suggest that tocotrienol species are effective for amelioration of steatohepatitis, and that tocotrienol and α-tocopherol exert a synergistic effect.

15.
J Clin Biochem Nutr ; 52(1): 32-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23341695

ABSTRACT

The present study was carried out to investigate the effect of vitamin E analogs, especially gamma-tocotrienol (γ-T3), on hepatic TG accumulation and enzymes related to fatty acid metabolism in three types of rat primary hepatocytes: (1) normal hepatocytes, (2) hepatocytes incubated in the presence of palmitic acid (PA), and (3) hepatocytes with fat accumulation. Our results showed that γ-T3 significantly reduced the TG content of normal hepatocytes. γ-T3 also increased the expression of carnitine palmitoyltransferase 1 (CPT1A) mRNA, and tended to reduce that of sterol regulatory element binding protein 1c (SREBP-1c) mRNA. In addition, γ-T3 markedly suppressed the gene expression of both C/EBP homologous protein (CHOP) and SREBP-1c induced by PA. As these two genes are located downstream of endoplasmic reticulum (ER) stress, their suppression by γ-T3 might result from a decrease of ER stress. Moreover, γ-T3 suppressed the expression of interleukin 1ß (IL-1ß), which lies downstream of CHOP signaling. Taken together, our data suggest that γ-T3 might prevent hepatic steatosis and ameliorate ER stress and subsequent inflammation in the liver.

16.
Genes Cells ; 17(8): 720-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22747662

ABSTRACT

Sphingomyelin (SM) is an abundant phospholipid in cell membranes. However, owing to the lack of appropriate probes, the subcellular distribution of SM remains unclear. In this study, we examined the localization of SM in COS-1 cells (green monkey kidney cells) by using two SM probes, lysenin and equinatoxin-II (EqtII). Both toxins stained SM in the plasma membrane (PM), and the stains were abolished by sphingomyelin synthase 2 (SMS2) knockdown or sphingomyelinase (SMase) treatment. Simultaneous labeling by the two toxins showed that the PM has heterogeneous SM pools: a SM pool stained by only lysenin, a SM pool stained only by EqtII, and a SM pool stained by both toxins. In permeabilized cells, lysenin exclusively stained late endosomes (LEs) among intracellular organelles, whereas EqtII stained recycling endosomes (REs) in addition to LEs. The intracellular SM stains by EqtII were abolished by sphingomyelin synthase 1 (SMS1) knockdown, but not by SMS2 knockdown. These results indicate that lysenin and EqtII label different SM pools and that SMS2 and SMS1 are responsible for the synthesis of SM in the PM and endomembranes, respectively, in COS-1 cells. The use of the two SM-binding probes may provide more insights into various sphingomyelin-mediated processes in different topological domains.


Subject(s)
Cnidarian Venoms/chemistry , Sphingomyelins/metabolism , Staining and Labeling/methods , Toxins, Biological/chemistry , Animals , Bridged-Ring Compounds/pharmacology , COS Cells , Cell Membrane/genetics , Cell Membrane/metabolism , Chlorocebus aethiops , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Norbornanes , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sphingomyelins/antagonists & inhibitors , Sphingomyelins/genetics , Thiocarbamates , Thiones/pharmacology , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , Transferases (Other Substituted Phosphate Groups)/pharmacology
17.
J Clin Biochem Nutr ; 47(2): 148-54, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20838570

ABSTRACT

Recently, it has been reported that α-tocopherol (α-Toc) is effective for amelioration of liver damage. However, it is unknown whether other vitamin E analogs are effective. In this study, we investigated the effects of γ-tocopherol (γ-Toc) and tocotrienols (T3) in rats with fatty liver. Rats fed a vitamin E-deficient diet for four weeks were divided into eight groups: Control, carbon tetrachloride (CCl(4)), α-Toc, α-Toc + CCl(4), γ-Toc, γ-Toc + CCl(4), T3 mix, T3 mix + CCl(4). After a 24 h fast, the rats were administered 20 mg of each of the vitamin E analogs, respectively. Moreover, the CCl(4) group were given 0.5 ml/kg body weight corn oil preparation containing CCl(4) 6 h after vitamin E administration. We measured the activities of aspartate aminotransferase and alanine aminotransferase (ALT) in plasma, and the contents of triglyceride (TG), total cholesterol (T-Chol) and vitamin E analogs in the liver. Also, we determined the hepatic expression of mRNA for inflammatory cytokines. The liver TG content in the γ-Toc + CCl(4) and T3 mix + CCl(4) groups was decreased in comparison with the CCl(4) group. Moreover, ALT activity in the T3 mix + CCl(4) group was significantly lower than CCl(4) group. These findings suggest that γ-Toc and T3 are effective for amelioration of fatty liver.

SELECTION OF CITATIONS
SEARCH DETAIL
...