Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 34(5): 731-746.e9, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35452600

ABSTRACT

Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.


Subject(s)
Memory T Cells , Monocarboxylic Acid Transporters , Lactates , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Pyruvic Acid/metabolism
2.
Front Immunol ; 11: 340, 2020.
Article in English | MEDLINE | ID: mdl-32174925

ABSTRACT

In the context of adoptive T cell transfer (ACT) for cancer treatment, it is crucial to generate in vitro large amounts of tumor-specific CD8 T cells with high potential to persist in vivo. PD-1, Tim3, and CD39 have been proposed as markers of tumor-specific tumor-infiltrating CD8 T lymphocytes (CD8 TILs). However, these molecules are highly expressed by terminally differentiated exhausted CD8 T cells (Tex) that lack proliferation potential. Therefore, optimized strategies to isolate tumor-specific TILs with high proliferative potential, such as Tcf1+ precursor exhausted T cells (Tpe) are needed to improve in vivo persistence of ACT. Here we aimed at defining cell surface markers that would unequivocally identify Types for precision cell sorting increasing the purity of tumor-specific PD-1+ Tcf1+ Tpe from total TILs. Transcriptomic analysis of Tpe vs. Tex CD8 TIL subsets from B16 tumors and primary human melanoma tumors revealed that Tpes are enriched in Slamf6 and lack Entpd1 and Havcr2 expression, which encode Slamf6, CD39, and Tim3 cell surface proteins, respectively. Indeed, we observed by flow cytometry that CD39- Tim3- Slamf6+ PD-1+ cells yielded maximum enrichment for tumor specific PD-1+ Tcf1+ OT1 TILs in B16.OVA tumors. Moreover, this population showed higher re-expansion capacity upon an acute infection recall response compared to the CD39+ counterparts or bulk PD-1+ TILs. Hence, we report an enhanced sorting strategy (CD39- Tim3- Slamf6+ PD-1+) of Tpes. In conclusion, we show that optimization of CD8 TIL cell sorting strategy is a viable approach to improve recall capacity and in vivo persistence of transferred cells in the context of ACT.


Subject(s)
Adoptive Transfer/methods , CD8-Positive T-Lymphocytes/immunology , Cell Separation/methods , Lymphocytes, Tumor-Infiltrating/immunology , Animals , Antigens, CD/analysis , Apyrase/analysis , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , Female , Humans , Lymphocytes, Tumor-Infiltrating/cytology , Melanoma/immunology , Melanoma/therapy , Mice , Mice, Inbred C57BL , Phenotype , Programmed Cell Death 1 Receptor/analysis , Receptors, CXCR5/analysis
3.
PLoS One ; 11(8): e0162105, 2016.
Article in English | MEDLINE | ID: mdl-27579489

ABSTRACT

Malignant gliomas are aggressive brain tumours with very poor prognosis. The majority of glioma cells are differentiated (glioma-differentiated cells: GDCs), whereas the smaller population (glioma-initiating cells, GICs) is undifferentiated and resistant to conventional therapies. Therefore, to better target this pool of heterogeneous cells, a combination of diverse therapeutic approaches is envisaged. Here we investigated whether the immunosensitising properties of the hypomethylating agent decitabine can be extended to GICs. Using the murine GL261 cell line, we demonstrate that decitabine augments the expression of the death receptor FAS both on GDCs and GICs. Interestingly, it had a higher impact on GICs and correlated with an enhanced sensitivity to FASL-mediated cell death. Moreover, the expression of other critical molecules involved in cognate recognition by cytotoxic T lymphocytes, MHCI and ICAM-1, was upregulated by decitabine treatment. Consequently, T-cell mediated killing of both GDCs and GICs was enhanced, as was T cell proliferation after reactivation. Overall, although GICs are described to resist classical therapies, our study shows that hypomethylating agents have the potential to enhance glioma cell recognition and subsequent destruction by immune cells, regardless of their differentiation status. These results support the development of combinatorial treatment modalities including epigenetic modulation together with immunotherapy in order to treat heterogenous malignancies such as glioblastoma.


Subject(s)
Azacitidine/analogs & derivatives , Brain Neoplasms/drug therapy , Glioma/drug therapy , Neoplastic Stem Cells/drug effects , fas Receptor/genetics , Animals , Azacitidine/administration & dosage , Azacitidine/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Decitabine , Fas Ligand Protein/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genes, MHC Class I/drug effects , Glioma/genetics , Glioma/immunology , Humans , Intercellular Adhesion Molecule-1/metabolism , Mice , Neoplastic Stem Cells/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/metabolism , Up-Regulation , Xenograft Model Antitumor Assays , fas Receptor/metabolism
4.
Cancer Res ; 75(15): 3020-31, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26116496

ABSTRACT

Vaccines that can coordinately induce multi-epitope T cell-mediated immunity, T helper functions, and immunologic memory may offer effective tools for cancer immunotherapy. Here, we report the development of a new class of recombinant protein cancer vaccines that deliver different CD8(+) and CD4(+) T-cell epitopes presented by MHC class I and class II alleles, respectively. In these vaccines, the recombinant protein is fused with Z12, a novel cell-penetrating peptide that promotes efficient protein loading into the antigen-processing machinery of dendritic cells. Z12 elicited an integrated and multi-epitopic immune response with persistent effector T cells. Therapy with Z12-formulated vaccines prolonged survival in three robust tumor models, with the longest survival in an orthotopic model of aggressive brain cancer. Analysis of the tumor sites showed antigen-specific T-cell accumulation with favorable modulation of the balance of the immune infiltrate. Taken together, the results offered a preclinical proof of concept for the use of Z12-formulated vaccines as a versatile platform for the development of effective cancer vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/pharmacology , Cell-Penetrating Peptides/immunology , Animals , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Cytosol/drug effects , Cytosol/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Female , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Immunity, Cellular , Immunization/methods , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms, Experimental/therapy , Th1 Cells/drug effects , Th1 Cells/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology
5.
Eur J Immunol ; 45(8): 2263-75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25929785

ABSTRACT

CD8(+) T cells controlling pathogens or tumors must function at sites where oxygen tension is frequently low, and never as high as under atmospheric culture conditions. However, T-cell function in vivo is generally analyzed indirectly, or is extrapolated from in vitro studies under nonphysiologic oxygen tensions. In this study, we delineate the role of physiologic and pathologic oxygen tension in vitro during reactivation and differentiation of tumor-specific CD8(+) T cells. Using CD8(+) T cells from pmel-1 mice, we observed that the generation of CTLs under 5% O2, which corresponds to physioxia in lymph nodes, gave rise to a higher effector signature than those generated under atmospheric oxygen fractions (21% O2). Hypoxia (1% O2) did not modify cytotoxicity, but decreasing O2 tensions during CTL and CD8(+) tumor-infiltrating lymphocyte reactivation dose-dependently decreased proliferation, induced secretion of the immunosuppressive cytokine IL-10, and upregulated the expression of CD137 (4-1BB) and CD25. Overall, our data indicate that oxygen tension is a key regulator of CD8(+) T-cell function and fate and suggest that IL-10 release may be an unanticipated component of CD8(+) T cell-mediated immune responses in most in vivo microenvironments.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Interleukin-10/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Hypoxia/genetics , Cell Hypoxia/immunology , Cell Line, Tumor , Humans , Interleukin-10/genetics , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Mice , Mice, Transgenic , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...