Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Materials (Basel) ; 13(12)2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32545881

ABSTRACT

Renewable vinyl compounds itaconic acid (IA) and its derivative 10-hydroxyhexylitaconic acid (10-HHIA) are naturally produced by fungi from biomass. This provides the opportunity to develop new biobased polyvinyls from IA and 10-HHIA monomers. In this study, we copolymerized these monomers at different ratios through free radical aqueous polymerization with potassium peroxodisulfate as an initiator, resulting in poly(IA-co-10-HHIA)s with different monomer compositions. We characterized the thermal properties of the polymers by thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). The nuclear magnetic resonance analysis and the gel permeation chromatography showed that the polymerization conversion, yield, and the molecular weights (weight-averaged Mw and number-averaged Mn) of the synthesized poly(IA-co-10-HHIA)s decreased with increasing 10-HHIA content. It is suggested that the hydroxyhexyl group of 10-HHIA inhibited the polymerization. The TGA results indicated that the poly(IA-co-10-HHIA)s continuously decomposed as temperature increased. The FT-IR analysis suggested that the formation of the hydrogen bonds between the carboxyl groups of IA and 10-HHIA in the polymer chains was promoted by heating and consequently the polymer dehydration occurred. To the best of our knowledge, this is the first time that biobased polyvinyls were synthesized using naturally occurring IA derivatives.

3.
Microorganisms ; 8(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365722

ABSTRACT

Recently, we developed a unique microbial screening method based on the Mizoroki-Heck reaction for itaconic acid (IA)-producing fungi. This method revealed that 37 out of 240 fungal strains isolated from soils produce vinyl compounds, including IA. In this study, we further characterized these compounds in order to verify that the screening method permits the isolation of fungi that produce other vinyl compounds, excluding IA. HPLC analysis showed that 11 out of 37 isolated strains produced IA, similar to Aspergillus terreus S12-1. Surprisingly, the other 8 isolated strains produced two vinyl compounds with HPLC retention times different from that of IA. From these strains, the vinyl compounds of Aspergillus niger S17-5 were characterized. Mass spectrometric and NMR analyses showed that they were identical to 8-hydroxyhexylitaconic acid (8-HHIA) and 9-HHIA. This finding showed that 8-HHIA- and 9-HHIA-producing fungi, as well as IA-producing fungi, are ubiquitously found in soils. Neither 8-HHIA nor 9-HHIA showed antibacterial or anti-inflammatory activities. Interestingly, 8-HHIA and 9-HHIA showed cytotoxicity against the human cervical cancer cell line (HeLa) and human diploid cell line (MRC-5), and MRC-5 only, respectively, compared to IA at the same concentration. This study indicates that the screening method could easily discover fungi producing 8-HHIA and 9-HHIA in soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...