Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomes ; 11(4)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37873875

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for implementing timely interventions and developing effective therapeutic strategies. Proteome-based biomarkers have emerged as promising tools for AD diagnosis and prognosis due to their ability to reflect disease-specific molecular alterations. There is of great significance for biomarkers in AD diagnosis and management. It emphasizes the limitations of existing diagnostic approaches and the need for reliable and accessible biomarkers. Proteomics, a field that comprehensively analyzes the entire protein complement of cells, tissues, or bio fluids, is presented as a powerful tool for identifying AD biomarkers. There is a diverse range of proteomic approaches employed in AD research, including mass spectrometry, two-dimensional gel electrophoresis, and protein microarrays. The challenges associated with identifying reliable biomarkers, such as sample heterogeneity and the dynamic nature of the disease. There are well-known proteins implicated in AD pathogenesis, such as amyloid-beta peptides, tau protein, Apo lipoprotein E, and clusterin, as well as inflammatory markers and complement proteins. Validation and clinical utility of proteome-based biomarkers are addressing the challenges involved in validation studies and the diagnostic accuracy of these biomarkers. There is great potential in monitoring disease progression and response to treatment, thereby aiding in personalized medicine approaches for AD patients. There is a great role for bioinformatics and data analysis in proteomics for AD biomarker research and the importance of data preprocessing, statistical analysis, pathway analysis, and integration of multi-omics data for a comprehensive understanding of AD pathophysiology. In conclusion, proteome-based biomarkers hold great promise in the field of AD research. They provide valuable insights into disease mechanisms, aid in early diagnosis, and facilitate personalized treatment strategies. However, further research and validation studies are necessary to harness the full potential of proteome-based biomarkers in clinical practice.

2.
J Basic Microbiol ; 63(7): 814-827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37010016

ABSTRACT

Due to their role in nutrient transmission, arbuscular mycorrhizal fungi (AMF) are widespread plant root symbionts. They may improve plant production by altering plant community structure and function. Therefore, a study was conducted in the state of Haryana to analyze the distribution pattern, diversity, and association of different AMF species with oil-yielding plants. The results of the study revealed the percentage of root colonization, sporulation, and diversity of fungal species associated with the selected 30 oil-yielding plants. The percentage root colonization ranged from 0% to 100%, the highest in Helianthus annuus (100.00 ± 0.00) and Zea mays (100.00 ± 0.00) and the least in Citrus aurantium (11.87 ± 1.43). At the same time, there was no root colonization in the Brassicaceae family. The number of AMF spores present in 50 g of soil samples varied from 17.41 ± 5.28 to 497.2 ± 8.38, with maximum spore population in Glycine max (497.2 ± 8.38) and minimum in Brassica napus (17.41 ± 5.28). Besides, the presence of several species of different genera of AMF was reported in all the studied oil-yielding plants, that is, 60 AMF belonging to six genera viz. Acaulospora, Entrophospora, Glomus, Gigaspora, Sclerocystis, and Scutellospora were observed. Overall, this study will promote AMF usage in oil-yielding plants.


Subject(s)
Glomeromycota , Mycorrhizae , Plant Roots/microbiology , Spores, Fungal , Zea mays/microbiology , Fungi , Soil Microbiology
3.
Plants (Basel) ; 12(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678969

ABSTRACT

Field pea is one of the important short-duration cool season pulse crops which contributes significantly towards food and nutritional security. Two heat-susceptible (HS) and two heat-tolerant (HT) genotypes were selected from the previous study for further characterization. A significant variation was observed for morpho-physiological traits studied. Principal component analysis explained that first two principal components, i.e., PC1 and PC2 showed 76.5% of the total variance in optimal condition, whereas 91.2% of the total variance was covered by the first two PCs in heat stress environment. The seed yield per plant determined significant and positive association with superoxide dismutase and number of seeds per pod under optimal conditions, whereas under heat stress condition, it was positively associated with number of effective pods per plant, biological yield per plant, proline, pod length, number of seeds per pod, superoxide dismutase, and peroxidase. The significant reduction was noticed in the susceptible genotypes, whereas tolerant genotypes showed stable and non-significant reduction in chlorophyll content. Further, minimum cell damage and higher hydrogen peroxide production was noticed in the susceptible genotypes. In addition, the biochemical characterization of HS and HT genotypes revealed that the higher expression of peroxidase, superoxide dismutase, and catalase modulates the tolerant responses in HT genotypes. These genotypes were further used in developing heat-tolerant field pea genotypes.

4.
Front Neurosci ; 17: 1308232, 2023.
Article in English | MEDLINE | ID: mdl-38415053

ABSTRACT

The process of decision-making is quite complex involving different aspects of logic, emotion, and intuition. The process of decision-making can be summarized as choosing the best alternative among a given plethora of options in order to achieve the desired outcome. This requires establishing numerous neural networks between various factors associated with the decision and creation of possible combinations and speculating their possible outcomes. In a nutshell, it is a highly coordinated process consuming the majority of the brain's energy. It has been found that the heart comprises an intrinsic neural system that contributes not only to the decision-making process but also the short-term and long-term memory. There are approximately 40,000 cells present in the heart known as sensory neurites which play a vital role in memory transfer. The heart is quite a mysterious organ, which functions as a blood-pumping machine and an endocrine gland, as well as possesses a nervous system. There are multiple factors that affect this heart ecosystem, and they directly affect our decision-making capabilities. These interlinked relationships hint toward the sensory neurites which modulate cognition and mood regulation. This review article aims to provide deeper insights into the various roles played by sensory neurites in decision-making and other cognitive functions. The article highlights the pivotal role of sensory neurites in the numerous brain functions, and it also meticulously discusses the mechanisms through which they modulate their effects.

5.
Chemosphere ; 286(Pt 2): 131761, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34375828

ABSTRACT

The current method of agriculture entails the usage of excessive amounts of pesticides and fertilizers. The blatant use of conventional pesticides and fertilizers over several decades has led to their bioaccumulation with adverse effects on soil biodiversity and the development of resistance by pests. With the decline in clinically useful antibiotics and increase in multi drug resistant microbes, it is imperative to develop new and effective antimicrobial therapies. Growing awareness and demand for efficacious biorational pesticides are on the rise. Silver nanoparticles are widely known antimicrobials and have been in use for several purposes for a long time. This work reviews the implications of applying silver nanoparticles in agriculture and their possible consequences. The physiological and biochemical changes in plants due to the uptake of silver nanoparticles as a consequence of its morphology, capping biomolecules and method of application are comprehensively discussed in this review article. Studies on tolerance levels or stress due to silver nanoparticles by variation in concentration/doses on diverse flora and fauna are also analyzed here. Further, phytotoxicity and genotoxicity due to the metal as well as its transformation in soil, water and sludge are taken into account. We also gauge the potential of biogenic silver nanoparticles-viable antimicrobial agents for enhanced applications in agriculture as biopesticides.


Subject(s)
Metal Nanoparticles , Silver , Biological Control Agents , Fertilizers , Metal Nanoparticles/toxicity , Prospective Studies , Silver/toxicity
6.
Saudi J Biol Sci ; 28(5): 2649-2654, 2021 May.
Article in English | MEDLINE | ID: mdl-34025149

ABSTRACT

Sesame (Sesamum indicum L.) is an important staple crop of the family Pedaliaceae. The commercial production of sesame is still dependent on the applications of chemical fertilizers. Mycorrhiza inoculum resulted in better morphological and biochemical traits in vegetables. Thus, here the outcome of arbuscular mycorrhizal fungi (AMF) and Pseudomonas fluorescence (ATCC-17400) inoculation was studied in the pot culture experiment. Primarily, there seems to be a promising opportunity of AMF in sesame under pot and field trials because of enhanced morphological parameters, especially root weight, and disparities in nutrients and metabolites. The AMF appears to be an option to boost plant growth, mineral content, and sesame yield. The AMF treatment with Pseudomonas fluorescence strain (ATCC-17400) determined the maximum values for the morphological traits and mineral content. Overall, our study highlights mycorrhizal fungi and other microbes efficacy in achieving a successful sesame production.

7.
J Hazard Mater ; 416: 125762, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33819643

ABSTRACT

The degradation of Pentoxifylline (PXF) was achieved successfully by green energy in a built-in solar photocatalytic system using hybrid LiCs ferrites (Li0.5Cs0.5FeO2) as magnetically recoverable photocatalysts. Kinetics showed a first-order reaction rate with maximum PXF removal of 94.91% at mildly acidic pH; additionally, the ferromagnetic properties of catalyst allowed recovery and reuse multiple times, reducing costs and time in degradation processes. The degradation products were identified by HPLC-MS and allowed us to propose a thermodynamically feasible mechanism that was validated through DFT calculations. Additionally, toxicity studies have been performed in bacteria and yeast where high loadings of Cs showed to be harmful to Staphylococcus aureus (MIC≥ 4.0 mg/mL); Salmonella typhi (MIC≥ 8.0 mg/mL) and Candida albicans (MIC≥ 10.0 mg/mL). The presented setup shows effectiveness and robustness in a degradation process using alternative energy sources for the elimination of non-biodegradable pollutants.


Subject(s)
Pentoxifylline , Water Pollutants, Chemical , Catalysis , Kinetics , Photolysis , Sunlight , Titanium , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...