Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Indian J Microbiol ; 56(2): 198-204, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27570312

ABSTRACT

Mycobacterium tuberculosis manages to remain latent in the human body regardless of extensive chemotherapy. Complete eradication of tuberculosis (TB) requires treatment strategies targeted against latent form of infection, in addition to the current regimen of antimycobacterials. Many in vitro and in vivo models have been proposed to imitate latent TB infection, yet none of them is able to completely mimic latent infection state of M. tuberculosis. Highly infectious nature of the pathogen requiring BSL3 facilities and its long generation time further add to complications. M. aurum has been proposed as an important model organism for high throughput screening of drugs and exhibits high genomic similarity with that of M. tuberculosis. Thus, the present study was undertaken to explore if M. aurum could be used as a surrogate organism for studies related to M. tuberculosis latent infection. M. aurum was subjected to in vitro conditions of oxygen depletion, lack of nutrients and acidic stress encountered by latent M. tuberculosis bacteria. CFU count of M. aurum cells along with any change in cell shape and size was recorded at regular intervals during the stress conditions. M. aurum cells were unable to survive for extended periods under all three conditions used in the study. Thus, our studies suggest that M. aurum is not a suitable organism to mimic M. tuberculosis persistent infection under in vitro conditions, and further studies are required on different species for the establishment of a fast growing species as a suitable model for M. tuberculosis persistent infection.

2.
Environ Sci Pollut Res Int ; 23(22): 22284-22291, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27032631

ABSTRACT

The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO2 from vent gas. The studies were carried out for CO2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO2 in vent gas to 15 vol.% of CO2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m2/day. The methane yield was 386 l CH4/kg VSfed of Chlorella sp. whereas 228 l CH4/kg VSfed of the consortium of algae.


Subject(s)
Biomass , Carbon Dioxide/metabolism , Chlorella vulgaris/metabolism , Microalgae/metabolism , Anaerobiosis , Biofuels , Carbon Cycle , India , Methane , Photobioreactors , Pilot Projects , Scenedesmus
SELECTION OF CITATIONS
SEARCH DETAIL
...