Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 252(Pt 2): 118876, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582420

ABSTRACT

The rapid transition towards modernization and industrialization led to an increase in urban population, resulting in paramount challenge to municipal sewage sludge management. Anaerobic digestion (AD) serves as a promising venue for energy recovery from waste-activated sludge (WAS). Addressing the challenge of breaking down floc structures and microbial cells is crucial for releasing extracellular polymeric substances and cytoplasmic macromolecules to facilitate hydrolysis and fermentation process. The present study aims to introduce a combined process of alkaline/acid pre-treatments and AD to enhance sludge digestion and biogas production. The study investigates the influence of alkali pretreatment at ambient temperature using four alkali reagents (NaOH, Ca(OH)2, Mg(OH)2, and KOH). The primary goal is to provide insights into the intricate interplay of alkali dosages (0.04-0.12 g/gTS) on key physic-chemical parameters crucial for optimizing the pre-treatment dosage. Under the optimized alkaline/acid pre-treatment condition, the TSS reduction of 18%-30% was achieved. An increase in sCOD concentration (24%-50%) signifies the enhanced hydrolysis and solubilization rate of organic substrate in WAS. Finally, the biomethane potential test (BMPT) was performed for pre-treated WAS samples. The maximum methane (CH4) yield was observed in combination A1 (244 mL/g) and D1 (253 mL/g), demonstrating the pivotal role of alkali optimization in enhancing AD efficiency. This study serves as a valuable resource to policymakers, researchers, and technocrats in addressing challenges associated to sludge management.


Subject(s)
Biofuels , Sewage , Sewage/chemistry , Biofuels/analysis , Anaerobiosis , Waste Disposal, Fluid/methods , Alkalies/chemistry , Methane , Sodium Hydroxide/chemistry , Calcium Hydroxide/chemistry , Magnesium Hydroxide/chemistry , Bioreactors , Hydroxides/chemistry , Potassium Compounds/chemistry
2.
Environ Res ; 241: 117560, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37949290

ABSTRACT

The properties of biocarriers significantly influence the performance of a moving bed-biofilm reactor (MBBR). This study aimed to assess the impact of media type, filling ratio, and hydraulic retention time (HRT) on biofilm formation and MBBR performance in both batch and continuous setups using real municipal wastewater. Two different media, high-density polyethylene (HDPE) and polypropylene (PPE), with varying surface area and properties were used. Biofilm growth and MBBR performance were monitored and optimized using response surface methodology. The effect of different media was investigated for three filling ratios of 20%, 40% and 60% and HRT of 4, 6 and 8 h. Results depicted a better biofilm growth on HDPE media in comparison to PPE carriers due to difference in media structure and surface properties. At all the conditions tested, HDPE media showed comparatively better performance for the removal of organic matter and nutrients than PPE media. The maximum organic matter removal efficiency was found as 77% and 75% at an HRT of 6 h and filling ratio of 40% for HDPE and PPE media, respectively. The ammonia removal was also found better for HDPE media due to its geometry and structure favoring the anoxic conditions with maximum removal of 89% achieved at 6-h HRT and 40% filling ratio. Overall, the system with HDPE media indicated more stability in terms of reactor performance than PPE carriers with variations in the operating conditions.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Biofilms , Polyethylene , Bioreactors
3.
EMBO Rep ; 24(12): e58201, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37877677

ABSTRACT

Advances in science and technology that enable the recovery of energy and other valuable compounds from sewage sludge can play an important role in a global transition to renewable energy sources.


Subject(s)
Environmental Pollutants , Wastewater , Sewage , Waste Disposal, Fluid
4.
Sci Total Environ ; 881: 163433, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37061055

ABSTRACT

Plastic waste is increasing rapidly due to urbanisation and globalization. In recent decades, plastic usage increased, and the upward trend is expected to continue. Only 9% of the 7 billion tonnes of plastic produced were recycled in India until 2022. India generates 1.5 million tonnes of plastic waste (PW) every year and ranks among top ten plastic producer countries. Large amount of waste plastics could harm environment and human health. The current manuscript provides a comprehensive approach for mechanical and chemical recycling methods. The technical facets of mechanical recycling relating to collection, sorting, grading, and general management to create plastic products with additional value have been elaborated in this study. Another sustainable methods aligned with the chemical recycling using pyrolysis, gasification, hydrocracking, IH2 (Integrated Hydropyrolysis 2), and KDV (Katalytische Drucklose Verolung) techniques have also been highlighted with the critical process parameters for the sustainable conversion of plastic waste to valuable products. The review also adheres to less carbon-intensive plastic degrading strategies that take a biomimetic approach using the microorganism based biodegradation. The informative aspects covering the limitations and effectiveness of all PW technologies and its applications towards plastic waste management (PWM) are also emphasized. The existing practices in PW policy guidelines along with its economic and ecological aspects have also been discussed.

5.
Chemosphere ; 191: 128-135, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29032257

ABSTRACT

In the present study, activated carbon (AC) supported bi-metallic catalyst (3.3Cu/2.2Ce/4.4AC) was subjected to catalytic wet oxidation (CWO) of simulated pulping effluent at moderate operating conditions (temperatures = 120-190 °C and oxygen partial pressures = 0.5-1.2 MPa). The oxidation reaction was performed in a high pressure reactor (capacity = 0.7 l) with catalyst concentration of 1-5 g/l for 3 h duration. During CWO at 190 °C temperature and 0.9 MPa oxygen pressure, the chemical oxygen demand (COD), total organic carbon (TOC), lignin and color removals from the wastewater were 79%, 77%, 88% and 89%, respectively, while the wastewater biodegradability was enhanced to 0.52 from an initial value of 0.16. TOC mass balance suggested that nearly 86-97% of the degraded TOC was mineralized whereas copper and cerium leaching from the catalyst were in the range of 1-15% and 0.7-1% with respect to their initial amounts. Metal leaching was reduced with increase in the reaction temperature. Global kinetic rate model was also developed using TOC degradation data and the activation energies of two step (rapid followed by slower TOC removal) CWO reaction were determined as 34.2 kJ/mol and 28.5 kJ/mol, respectively.


Subject(s)
Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants/analysis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Catalysis , Cerium , Charcoal , Copper , Kinetics , Lignin , Metals , Oxidation-Reduction , Oxygen , Temperature , Wastewater/statistics & numerical data
6.
Environ Technol ; 37(8): 1018-25, 2016.
Article in English | MEDLINE | ID: mdl-26508075

ABSTRACT

The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.


Subject(s)
Industrial Waste , Paper , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Biological Oxygen Demand Analysis , Carbon/analysis , Carbon/chemistry , Catalysis , Cerium/chemistry , Copper/chemistry , Lignin/analysis , Manganese/chemistry , Oxidation-Reduction , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis
7.
Environ Sci Pollut Res Int ; 23(20): 20081-20086, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26354113

ABSTRACT

The present study was performed to investigate the performance of activated carbon-supported copper and manganese base catalyst for catalytic wet oxidation (CWO) of pulping effluent. CWO reaction was performed in a high pressure reactor (capacity = 0.7 l) at temperatures ranging from 120 to 190 °C and oxygen partial pressures of 0.5 to 0.9 MPa with the catalyst concentration of 3 g/l for 3 h duration. With Cu/Mn/AC catalyst at 190 °C temperature and 0.9 MPa oxygen partial pressures, the maximum chemical oxygen demand (COD), total organic carbon (TOC), lignin, and color removals of 73, 71, 86, and 85 %, respectively, were achieved compared to only 52, 51, 53, and 54 % removals during the non-catalytic process. Biodegradability (in terms of 5-day biochemical oxygen demand (BOD5) to COD ratio) of the pulping effluent was improved to 0.38 from an initial value of 0.16 after the catalytic reaction. The adsorbed carbonaceous fraction on the used catalyst was also determined which contributed meager TOC reduction of 3-4 %. The leaching test showed dissolution of the metals (i.e., Cu and Mn) from the catalysts in the wastewater during CWO reaction at 190 °C temperature and 0.9 MPa oxygen partial pressures. In the future, the investigations should focus on the catalyst reusability.


Subject(s)
Charcoal/chemistry , Copper/chemistry , Manganese/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Catalysis , Hot Temperature , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...