Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 9(8): 2160-2171, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35642734

ABSTRACT

Zinc (Zn)-anode batteries, although safe and non-flammable, are precluded from promising applications because of their low voltage (<2 V) and poor rechargeability. Here, we report the fabrication of rechargeable membrane-less Zn-anode batteries with high voltage properties (2.5 to 3.4 V) achieved through coupling cathodes and Zn-anodes in gelled concentrated acid and alkaline solutions separated by a gelled buffer interlayer containing the working ions. The concentrated gelled buffer interlayers perform dual functions of regulating the pH of the system and acting as the source and sink of the working ions. With this strategy we show low-cost membrane-less 2.5 to 3.4 V Zn-manganese dioxide (MnO2) batteries capable of cycling 10-100% of 617 mA h g-1-MnO2 and 20-30% of 820 mA h g-1-Zn and demonstrate their application in electric vehicles. This strategy is then applied to other oxide-based cathode systems like Cu2O and V2O5, where voltages of 2 to 3 V are obtained in membrane-less batteries.

2.
ACS Appl Mater Interfaces ; 12(45): 50406-50417, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33118811

ABSTRACT

Alkaline zinc-manganese dioxide (Zn-MnO2) batteries are well suited for grid storage applications because of their inherently safe, aqueous electrolyte and established materials supply chain, resulting in low production costs. With recent advances in the development of Cu/Bi-stabilized birnessite cathodes capable of the full 2-electron capacity equivalent of MnO2 (617 mA h/g), there is a need for selective separators that prevent zincate (Zn(OH)4)2- transport from the anode to the cathode during cycling, as this electrode system fails in the presence of dissolved zinc. Herein, we present the synthesis of N-butylimidazolium-functionalized polysulfone (NBI-PSU)-based separators and evaluate their ability to selectively transport hydroxide over zincate. We then examine their impact on the cycling of high depth of discharge Zn/(Cu/Bi-MnO2) batteries when inserted in between the cathode and anode. Initially, we establish our membranes' selectivity by performing zincate and hydroxide diffusion tests, showing a marked improvement in zincate-blocking (DZn (cm2/min): 0.17 ± 0.04 × 10-6 for 50-PSU, our most selective separator vs 2.0 ± 0.8 × 10-6 for Cellophane 350P00 and 5.7 ± 0.8 × 10-6 for Celgard 3501), while maintaining similar crossover rates for hydroxide (DOH (cm2/min): 9.4 ± 0.1 × 10-6 for 50-PSU vs 17 ± 0.5 × 10-6 for Cellophane 350P00 and 6.7 ± 0.6 × 10-6 for Celgard 3501). We then implement our membranes into cells and observe an improvement in cycle life over control cells containing only the commercial separators (cell lifetime extended from 21 to 79 cycles).

3.
Nat Commun ; 8: 14424, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262697

ABSTRACT

Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ∼10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cu to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ∼140 Wh l-1 is shown.

4.
Nanoscale ; 3(9): 3555-62, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21837335

ABSTRACT

Significant scientific progress has been achieved using nanostructured materials for thermoelectric energy harvesting and solid-state cooling through the conversion of waste heat into electricity and vice versa. However, the connection between the small-scale proof-of concept results achieved in research labs and real industrial scale manufacture is still missing. Herein we develop an analysis to determine the appropriate thermoelectric nanomaterials for the large-scale manufacture and deployment in the near future. We cover key parameters such as ZT value, cost, abundance, and toxicity. Maximum ZT values are considered at three temperature ranges. Material cost and abundance are visually demonstrated to improve ease of interpretation. Toxicity is also evaluated to minimize the environmental impact during manufacture and recycling. Lastly, a parameter termed "efficiency ratio" is calculated to give a better qualitative understanding of the feasibility and sustainability of these nanomaterials.


Subject(s)
Nanostructures/chemistry , Electricity , Metals/chemistry , Nanostructures/economics , Nanostructures/toxicity , Temperature
5.
Nanoscale ; 3(10): 4078-81, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21858372

ABSTRACT

The large thermal conductivity of bulk complex metal oxides such as SrTiO(3), NaCo(2)O(4), and Ca(3)Co(4)O(9) has set a barrier for the improvement of thermoelectric figure of merit and the applications of these materials in high temperature (≥1000 K) thermoelectric energy harvesting and solid-state cooling. Here, we present a self-templated synthesis approach to grow ultrathin SrTiO(3) nanowires with an average diameter of 6 nm in large quantity. The thermal conductivity of the bulk pellet made by compressing nanowire powder using spark plasma sintering shows a 64% reduction in thermal conductivity at 1000 K, which agrees well with theoretical modeling.


Subject(s)
Calcium Compounds/chemistry , Nanowires/chemistry , Oxides/chemistry , Titanium/chemistry , Models, Theoretical , Nanowires/ultrastructure , Thermal Conductivity
6.
Nanoscale ; 3(6): 2430-43, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21528152

ABSTRACT

Substantial efforts have been devoted to design, synthesize, and integrate various semiconductor nanostructures for photovoltaic (PV) solar cells. In this article, we will review the recent progress in this exciting area and cover the material chemistry and physics related to all-inorganic nanostructure solar cells, hybrid inorganic nanostructure-conductive polymer composite solar cells, and dye-sensitized solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...