Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Struct Biol X ; 9: 100097, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38361954

ABSTRACT

Aquaporin Z (AqpZ), a bacterial water channel, forms a tetrameric complex and, like many other membrane proteins, activity is regulated by lipids. Various methods have been developed to facilitate structure determination of membrane proteins, such as the use of antibodies. Here, we graft onto AqpZ the ALFA tag (AqpZ-ALFA), an alpha helical epitope, to make use of the high-affinity anti-ALFA nanobody (nB). Native mass spectrometry reveals the AqpZ-ALFA fusion forms a stable, 1:1 complex with nB. Single-particle cryogenic electron microscopy studies reveal the octameric (AqpZ-ALFA)4(nB)4 complex forms a dimeric assembly and the structure was determined to 1.9 Å resolution. Dimerization of the octamer is mediated through stacking of the symmetrically bound nBs. Tube-like density is also observed, revealing a potential cardiolipin binding site. Grafting of the ALFA tag, or other epitope, along with binding and association of nBs to promote larger complexes will have applications in structural studies and protein engineering.

2.
Front Mol Neurosci ; 16: 1205516, 2023.
Article in English | MEDLINE | ID: mdl-37435575

ABSTRACT

Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic ß-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.

3.
Biochem Soc Trans ; 50(6): 1659-1672, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36511243

ABSTRACT

Chloride is the most abundant inorganic anions in almost all cells and in human circulation systems. Its homeostasis is therefore important for systems physiology and normal cellular activities. This topic has been extensively studied with chloride loaders and extruders expressed in both cell surfaces and intracellular membranes. With the newly discovered, large-conductance, highly selective Cl- channel formed by membrane-bound chromogranin B (CHGB), which differs from all other known anion channels of conventional transmembrane topology, and is distributed in plasma membranes, endomembrane systems, endosomal, and endolysosomal compartments in cells expressing it, we will discuss the potential physiological importance of the CHGB channels to Cl- homeostasis, cellular excitability and volume control, and cation uptake or release at the cellular and subcellular levels. These considerations and CHGB's association with human diseases make the CHGB channel a possible druggable target for future molecular therapeutics.


Subject(s)
Chloride Channels , Chlorides , Humans , Chlorides/metabolism , Chloride Channels/metabolism , Chromogranin B/metabolism , Anions/metabolism , Homeostasis
4.
Commun Biol ; 5(1): 1054, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192627

ABSTRACT

Projected potential of 2.5-4.0 Å cryo-EM structures for structure-based drug design is not well realized yet. Here we show that a 3.1 Å structure of PRMT5 is suitable for selecting computed poses of a chemical inhibitor and its analogs for enhanced potency. PRMT5, an oncogenic target for various cancer types, has many inhibitors manifesting little cooperativity with MTA, a co-factor analog accumulated in MTAP-/- cells. To achieve MTA-synergic inhibition, a pharmacophore from virtual screen leads to a specific inhibitor (11-2 F). Cryo-EM structures of 11-2 F / MTA-bound human PRMT5/MEP50 complex and its apo form resolved at 3.1 and 3.2 Å respectively show that 11-2 F in the catalytic pocket shifts the cofactor-binding pocket away by ~2.0 Å, contributing to positive cooperativity. Computational analysis predicts subtype specificity of 11-2 F among PRMTs. Structural analysis of ligands in the binding pockets is performed to compare poses of 11-2 F and its redesigned analogs and identifies three new analogs predicted to have significantly better potency. One of them, after synthesis, is ~4 fold more efficient in inhibiting PRMT5 catalysis than 11-2 F, with strong MTA-synergy. These data suggest the feasibility of employing near-atomic resolution cryo-EM structures and computational analysis of ligand poses for small molecule therapeutics.


Subject(s)
Enzyme Inhibitors , Protein-Arginine N-Methyltransferases , Humans , Adaptor Proteins, Signal Transducing/metabolism , Cryoelectron Microscopy , Ligands , Protein-Arginine N-Methyltransferases/metabolism
5.
J Biol Chem ; 294(30): 11579-11596, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31186347

ABSTRACT

Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off ∼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.


Subject(s)
Biological Factors/metabolism , Telomerase/antagonists & inhibitors , Catalysis , Catalytic Domain , Cell Line , Enzyme Activation , Humans , Telomerase/metabolism
6.
Life Sci Alliance ; 1(5): e201800139, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30456382

ABSTRACT

Regulated secretion is an intracellular pathway that is highly conserved from protists to humans. Granin family proteins were proposed to participate in the biogenesis, maturation and release of secretory granules in this pathway. However, the exact molecular mechanisms underlying the intracellular functions of the granin family proteins remain unclear. Here, we show that chromogranin B (CHGB), a secretory granule protein, inserts itself into membrane and forms a chloride-conducting channel. CHGB interacts strongly with phospholipid membranes through two amphipathic α helices. At a high local concentration, CHGB insertion in membrane causes significant bilayer remodeling, producing protein-coated nanoparticles and nanotubules. Fast kinetics and high cooperativity for anion efflux from CHGB vesicles suggest that CHGB tetramerizes to form a functional channel with a single-channel conductance of ∼125 pS (150/150 mM Cl-). The CHGB channel is sensitive to an anion channel blocker and exhibits higher anion selectivity than the other six known families of Cl- channels. Our data suggest that the CHGB subfamily of granin proteins forms a new family of organelle chloride channels.

7.
Mol Cell ; 63(3): 420-32, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27425409

ABSTRACT

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.


Subject(s)
Chromatin/metabolism , MicroRNAs/biosynthesis , Nuclear Proteins/metabolism , RNA Processing, Post-Transcriptional , Transcription, Genetic , Animals , Binding Sites , Chromatin/genetics , Chromatin Immunoprecipitation , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA-Binding Proteins , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genome, Human , HeLa Cells , Humans , MicroRNAs/genetics , Nuclear Proteins/genetics , Protein Binding , RNA Interference , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Transfection
8.
PLoS One ; 9(12): e115409, 2014.
Article in English | MEDLINE | ID: mdl-25521849

ABSTRACT

M. tuberculosis harbors an essential phosphoserine phosphatase (MtSerB2, Rv3042c) that contains two small- molecule binding ACT-domains (Pfam 01842) at the N-terminus followed by the phosphoserine phosphatase (PSP) domain. We found that exogenously added MtSerB2 elicits microtubule rearrangements in THP-1 cells. Mutational analysis demonstrates that phosphatase activity is co-related to the elicited rearrangements, while addition of the ACT-domains alone elicits no rearrangements. The enzyme is dimeric, exhibits divalent metal- ion dependency, and is more specific for l- phosphoserine unlike other classical PSPases. Binding of a variety of amino acids to the ACT-domains influences MtSerB2 activity by either acting as activators/inhibitors/have no effects. Additionally, reduced activity of the PSP domain can be enhanced by equimolar addition of the ACT domains. Further, we identified that G18 and G108 of the respective ACT-domains are necessary for ligand-binding and their mutations to G18A and G108A abolish the binding of ligands like l- serine. A specific transition to higher order oligomers is observed upon the addition of l- serine at ∼0.8 molar ratio as supported by Isothermal calorimetry and Size exclusion chromatography experiments. Mutational analysis shows that the transition is dependent on binding of l- serine to the ACT-domains. Furthermore, the higher-order oligomeric form of MtSerB2 is inactive, suggesting that its formation is a mechanism for feedback control of enzyme activity. Inhibition studies involving over eight inhibitors, MtSerB2, and the PSP domain respectively, suggests that targeting the ACT-domains can be an effective strategy for the development of inhibitors.


Subject(s)
Mycobacterium tuberculosis/enzymology , Phosphoric Monoester Hydrolases/chemistry , Amino Acid Sequence , Binding Sites , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Sequence Data , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Binding
9.
PLoS One ; 6(11): e26629, 2011.
Article in English | MEDLINE | ID: mdl-22073177

ABSTRACT

HIV-1 Nef modulates disease progression through interactions with over 30 host proteins. Individual chains fold into membrane-interacting N-terminal and C-terminal core (Nef(core)) domains respectively. Nef exists as small oligomers near membranes and associates into higher oligomers such as tetramers or hexadecamers in the cytoplasm. Earlier structures of the Nef(core) in apo and complexed forms with the Fyn-kinase SH3 domain revealed dimeric association details and the role of the conserved PXXP recognition motif (residues 72-78) of Nef in SH3-domain interactions. The crystal structure of the tetrameric Nef reported here corresponds to the elusive cytoplasmic stage. Comparative analyses show that subunits of Nef(core) dimers (open conformation) swing out with a relative displacement of ~22 Å and rotation of ~174° to form the 'closed' tetrameric structure. The changes to the association are around Asp125, a conserved residue important for viral replication and the important XR motif (residues 107-108). The tetramer associates through C4 symmetry instead of the 222 symmetry expected when two dimers associate together. This novel dimer-tetramer transition agrees with earlier solution studies including small angle X-ray scattering, analytical ultracentrifugation, dynamic laser light scattering and our glutaraldehyde cross-linking experiments. Comparisons with the Nef(core)--Fyn-SH3 domain complexes reveal that the PXXP motif that interacts with the SH3-domain in the dimeric form is sterically occluded in the tetramer. However the 151-180 loop that is distal to the PXXP motif and contains several protein interaction motifs remains accessible. The results suggest how changes to the oligomeric state of Nef can help it distinguish between protein partners.


Subject(s)
Biopolymers/chemistry , Gene Products, nef/chemistry , HIV-1/metabolism , Amino Acid Sequence , Base Sequence , Crystallography, X-Ray , DNA Primers , Models, Molecular , Molecular Sequence Data , Polymerase Chain Reaction , Scattering, Radiation , Sequence Homology, Amino Acid , Ultracentrifugation
10.
Eur J Med Chem ; 43(10): 2149-58, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18155810

ABSTRACT

Several regioisomeric tetrazolyl indole derivatives with structurally modified alkyl substituents at the tetracyclic indole nitrogen containing N-ethyl amino tetrazole moiety have been synthesized and screened for their ER binding affinity, agonist (estrogenic), antagonist (antiestrogenic) and anti-implantation activities. N-2 regioisomers were found to be moderately antagonists and one compound showed 100% contraceptive efficacy at 10 mg/kg dose. Molecular docking studies carried out in comparison to estradiol and raloxifene showed different binding modes of the two regioisomers to the binding site.


Subject(s)
Estrogen Antagonists/chemical synthesis , Estrogen Antagonists/pharmacology , Estrogens/agonists , Indoles/chemical synthesis , Indoles/pharmacology , Tetrazoles/chemistry , Animals , Contraceptives, Postcoital/chemical synthesis , Contraceptives, Postcoital/chemistry , Contraceptives, Postcoital/metabolism , Contraceptives, Postcoital/pharmacology , Drug Design , Estrogen Antagonists/chemistry , Estrogen Antagonists/metabolism , Female , Indoles/chemistry , Indoles/metabolism , Ligands , Male , Models, Molecular , Molecular Conformation , Rats , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...