Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(1): 123-126, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36563379

ABSTRACT

We quantitatively measure the nanomechanical dynamics of a water surface excited by the radiation pressure of a Gaussian/annular laser beam of incidence near total internal reflection (TIR). Notably, the radiation pressure near TIR allowed us to induce a pushing force (Abraham's momentum of light) for a wide annular Gaussian beam excitation of the thin-film regime of water, which, to the best of our knowledge, has never been observed with nanometric precision previously. Our finding suggests that the observation of either/both Abraham's and Minkowski's theories can be witnessed by the interplay between optics and fluid mechanics. Furthermore, we demonstrate the first, to the best of our knowledge, simultaneous measurement of Abraham's and Minkowski's momenta emerging in a single setup with a single laser shot. Our experimental results are strongly backed by numerical simulations performed with realistic experimental parameters and offer a broad range of light applications in optofluidics and light-actuated micromechanics.

2.
ACS Photonics ; 9(4): 1143-1149, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35480494

ABSTRACT

THz radiation finds various applications in science and technology. Pump-probe experiments at free-electron lasers typically rely on THz radiation generated by optical rectification of ultrafast laser pulses in electro-optic crystals. A compact and cost-efficient alternative is offered by the Smith-Purcell effect: a charged particle beam passes a periodic structure and generates synchronous radiation. Here, we employ the technique of photonic inverse design to optimize a structure for Smith-Purcell radiation at a single wavelength from ultrarelativistic electrons. The resulting design is highly resonant and emits narrowbandly. Experiments with a 3D-printed model for a wavelength of 900 µm show coherent enhancement. The versatility of inverse design offers a simple adaption of the structure to other electron energies or radiation wavelengths. This approach could advance beam-based THz generation for a wide range of applications.

3.
Light Sci Appl ; 11(1): 115, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484109

ABSTRACT

Laser-induced thermocapillary deformation of liquid surfaces has emerged as a promising tool to precisely characterize the thermophysical properties of pure fluids. However, challenges arise for nanofluid (NF) and soft bio-fluid systems where the direct interaction of the laser generates an intriguing interplay between heating, momentum, and scattering forces which can even damage soft biofluids. Here, we report a versatile, pump-probe-based, rapid, and non-contact interferometric technique that resolves interface dynamics of complex fluids with the precision of ~1 nm in thick-film and 150 pm in thin-film regimes below the thermal limit without the use of lock-in or modulated beams. We characterize the thermophysical properties of complex NF in three exclusively different types of configurations. First, when the NF is heated from the bottom through an opaque substrate, we demonstrate that our methodology permits the measurement of thermophysical properties (viscosity, surface tension, and diffusivity) of complex NF and biofluids. Second, in a top illumination configuration, we show a precise characterization of NF by quantitively isolating the competing forces, taking advantage of the different time scales of these forces. Third, we show the measurement of NF confined in a metal cavity, in which the transient thermoelastic deformation of the metal surface provides the properties of the NF as well as thermo-mechanical properties of the metal. Our results reveal how the dissipative nature of the heatwave allows us to investigate thick-film dynamics in the thin-film regime, thereby suggesting a general approach for precision measurements of complex NFs, biofluids, and optofluidic devices.

4.
Opt Lett ; 44(14): 3594-3597, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31305580

ABSTRACT

We propose a simple compact interferometer using twisted light to detect picometer displacement on a solid or liquid surface. The heart of the interferometer lies in producing a daisy petal pattern formed by interference between two oppositely charged twisted beams. The sample being probed is an active component of the interferometer. By analyzing the rotation of the petal pattern, caused by the relative displacement between the cylindrical lens (CL) and solid/liquid surface, we exhibit picometer resolution in displacement measurements. Remarkably, we explore the significance of a radial quantum number in the measurement of surface displacement and surface tilt angle. We also investigate the arbitrary surface deformation profile with similar precision by modifying the set-up. We perform simulations in realistic experimental settings and show that they are in excellent agreement with the predictions of analytic expressions. The proposed set-up can be further miniaturized by a small focal length CL and will open routes for tremendous applications in picometer-scale displacement measurement of a solid or liquid interface by various excitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...