Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1258934, 2024.
Article in English | MEDLINE | ID: mdl-38440136

ABSTRACT

In dry deciduous tropical forests, both seasons (winter and summer) offer habitats that are essential ecologically. How these seasonal changes affect soil properties and microbial communities is not yet fully understood. This study aimed to investigate the influence of seasonal fluctuations on soil characteristics and microbial populations. The soil moisture content dramatically increases in the summer. However, the soil pH only gradually shifts from acidic to slightly neutral. During the summer, electrical conductivity (EC) values range from 0.62 to 1.03 ds m-1, in contrast to their decline in the winter. The levels of soil macronutrients and micronutrients increase during the summer, as does the quantity of soil organic carbon (SOC). A two-way ANOVA analysis reveals limited impacts of seasonal fluctuations and specific geographic locations on the amounts of accessible nitrogen (N) and phosphorus (P). Moreover, dehydrogenase, nitrate reductase, and urease activities rise in the summer, while chitinase, protease, and acid phosphatase activities are more pronounced in the winter. The soil microbes were identified in both seasons through 16S rRNA and ITS (Internal Transcribed Spacer) gene sequencing. Results revealed Proteobacteria and Ascomycota as predominant bacterial and fungal phyla. However, Bacillus, Pseudomonas, and Burkholderia are dominant bacterial genera, and Aspergillus, Alternaria, and Trichoderma are dominant fungal genera in the forest soil samples. Dominant bacterial and fungal genera may play a role in essential ecosystem services such as soil health management and nutrient cycling. In both seasons, clear relationships exist between soil properties, including pH, moisture, iron (Fe), zinc (Zn), and microbial diversity. Enzymatic activities and microbial shift relate positively with soil parameters. This study highlights robust soil-microbial interactions that persist mainly in the top layers of tropical dry deciduous forests in the summer and winter seasons. It provides insights into the responses of soil-microbial communities to seasonal changes, advancing our understanding of ecosystem dynamics and biodiversity preservation.

2.
Sci Total Environ ; 920: 170957, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38365037

ABSTRACT

Year-long (2019) measurements of carbonaceous aerosols were performed at Bhopal, a regionally representative site as a part of the COALESCE (Carbonaceous Aerosol Emissions, Source apportionment and Climate Impacts) campaign. Aerosol-associated non-polar organic compounds (NPOCs) were analysed using thermal desorption (TD) Gas chromatography/Mass spectrometry (TD-GC/MS). The annual average of the total organic carbon (OC), elemental carbon (EC), and analysed PAHs (Polycyclic Aromatic Hydrocarbons), and n-alkanes were, 9.74 ± 9.47 µg m-3, 2.13 ± 3.12 µg m-3, 10.43 ± 5.49 ng m-3, and 114.93 ± 49.24 ng m-3, respectively. PAHs diagnostic ratios suggested emissions from petroleum, grass, wood, and coal combustion. Combustion derived PAHs (CombPAHs) accounted for 72.5 % of the total measured PAHs. During wintertime, based on Pyr/BaP ratio (∼0.6), gasoline exhaust emissions were higher compared to diesel exhaust emissions. The weak correlations between PAHs and meteorological parameters suggested that variations in PAH levels are primarily driven by alterations in emission sources. Total PAHs were correlated moderately with BrC (r2 = 0.60). The estimated lifetime lung cancer risk (LLCR) values on exposure to 16 USEPA priority PAHs (5 × 10-5) demonstrated that PAH levels in this region pose moderate health risks. Given observations from only campaign mode short-term measurements of NPOCs over India, this work provides a more comprehensive understanding of the concentrations, seasonal variations, and sources of n-alkanes and health risk associated with particle bound PAHs over the data-poor central Indian region.

3.
ACS Pharmacol Transl Sci ; 6(12): 1801-1816, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38093838

ABSTRACT

Hepatocellular carcinoma (HCC) remains one of the predominant causes of cancer-related mortality across the globe. It is attributed to obesity, excessive alcohol consumption, smoking, and infection by the hepatitis virus. Early diagnosis of HCC is essential, and local treatments such as surgical excision and percutaneous ablation are effective. Palliative systemic therapy, primarily with the tyrosine kinase inhibitor Sorafenib, is used in advanced cases. However, the prognosis for advanced HCC remains poor. This Review additionally describes the pathophysiological mechanisms of HCC, which include aberrant molecular signaling, genomic instability, persistent inflammation, and the paradoxical position of the immune system in promoting and suppressing HCC. The paper concludes by discussing the growing body of research on the relationship between mitochondria and HCC, suggesting that mitochondrial dysfunction may contribute to the progression of HCC. This Review focuses on immunological interactions between different mechanisms of HCC progression, including obesity, viral infection, and alcohol consumption.

4.
Chemistry ; 29(61): e202302187, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37529862

ABSTRACT

A new series of highly soluble perylene anti-bis(4,5-dialkoxybenzimidazole)s bearing branched flexible chains stabilizing room temperature columnar hexagonal phase and with balanced ambipolar charge carrier mobility is reported for the first time. Only the anti isomer was successfully separated and characterized. These compounds have a high extinction coefficient, small optical band gap and wide absorption range, thus making them a promising class of ambipolar organic semiconductors capable of self-organizing.

5.
Sci Total Environ ; 886: 163872, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37149165

ABSTRACT

Thermal elemental carbon (EC), optical black carbon (BC), organic carbon (OC), mineral dust (MD), and 7-wavelength optical attenuation of 24-hour ambient PM2.5 samples were measured/estimated at a regionally representative site (Bhopal, central India) during a business-as-usual year (2019) and the COVID-19 lockdowns year (2020). This dataset was used to estimate the influence of emissions source reductions on the optical properties of light-absorbing aerosols. During the lockdown period, the concentration of EC, OC, BC880 nm, and PM2.5 increased by 70 % ± 25 %, 74 % ± 20 %, 91 % ± 6 %, and 34 % ± 24 %, respectively, while MD concentration decreased by 32 % ± 30 %, compared to the same time period in 2019. Also, during the lockdown period, the estimated absorption coefficient (babs) and mass absorption cross-section (MAC) values of Brown Carbon (BrC) at 405 nm were higher (42 % ± 20 % and 16 % ± 7 %, respectively), while these quantities for MD, i.e., babs-MD and MACMD values were lower (19 % ± 9 % and 16 % ± 10 %), compared to the corresponding period during 2019. Also, babs-BC-808 (115 % ± 6 %) and MACBC-808 (69 % ± 45 %) values increased during the lockdown period compared with the corresponding period during 2019. It is hypothesized that although anthropogenic emissions (chiefly industrial and vehicular) reduced drastically during the lockdown period compared to the business-as-usual period, an increase in the values of optical properties (babs and MAC) and concentrations of BC and BrC, were likely due to the increased local and regional biomass burning emissions during this period. This hypothesis is supported by the CBPF (Conditional Bivariate Probability Function) and PSCF (Potential Source Contribution Function) analyses for BC and BrC.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Carbon/analysis , Communicable Disease Control , COVID-19/epidemiology , Dust/analysis , Environmental Monitoring , India , Particulate Matter/analysis , Respiratory Aerosols and Droplets , Soot/analysis
6.
Chem Commun (Camb) ; 59(40): 6028-6031, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37098750

ABSTRACT

A self-assembled ambipolar organic semiconductor based on naphthalene diimide with low clearing temperature, solution processability, and high molar extinction coefficient, exhibiting a room temperature columnar hexagonal liquid crystalline phase is reported.

7.
Sci Total Environ ; 880: 163277, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028678

ABSTRACT

Atmospheric PM2.5 thermal elemental carbon (EC), optical black carbon (BC), brown carbon (BrC), and mineral dust (MD) were characterized during a field campaign at a regionally representative site (Bhopal, central India) all year-long during 2019. In this study, the optical characteristics of PM2.5 during 'EC-rich', 'OC-rich', and 'MD-rich' days were used in a three-component model to estimate site-specific Absorption Ångström exponent (AAE) and absorption coefficient (babs) of light-absorbing PM2.5 constituents. The AAE for 'EC-rich', 'OC-rich', and 'MD-rich' days were 1.1 ± 0.2, 2.7 ± 0.3, and 3.0 ± 0.9, respectively. The percentage contribution of calculated babs of EC, BrC, and MD to the total babs at 405 nm was dominated by EC during the entire study period (EC; 64 % ± 36 %, BrC: 30 % ± 5 %, MD: 10 % ± 1 %). Further, site-specific mass absorption cross-section (MAC) values were calculated to assess the impact of their use over the use of manufacturer-specified MAC values in estimating BC concentrations. The r2 between thermal EC and optical BC was higher (r2 = 0.67, slope = 1.1) when daily site-specific MAC values were used rather than using the default MAC value (16.6 m2 g-1; r2 = 0.54 and slope = 0.6). Overall, had the default MAC880 been used instead of the site-specific values, we would have underestimated the BC concentration by 39 % ± 18 % during the study period.

8.
Int J Biol Macromol ; 240: 124471, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37076076

ABSTRACT

Thermosynechococcus elongatus-BP1 belongs to the class of photoautotrophic cyanobacterial organisms. The presence of chlorophyll a, carotenoids, and phycocyanobilin are the characteristics that categorize T. elongatus as a photosynthetic organism. Here, we report the structural and spectroscopic characteristics of a novel hemoglobin (Hb) Synel Hb from T.elongatus, synonymous with Thermosynechococcus vestitus BP-1. The X-ray crystal structure (2.15 Å) of Synel Hb suggests the presence of a globin domain with a pre-A helix similar to the sensor domain (S) family of Hbs. The rich hydrophobic core accommodates heme in a penta-coordinated state and readily binds an extraneous ligand (imidazole). The absorption and circular dichroic spectral analysis of Synel Hb reiterated that the heme is in FeIII+ state with a predominantly α-helical structure similar to myoglobin. Synel Hb displays higher resistance to structural perturbations induced via external stresses like pH and guanidium hydrochloride, which is comparable to Synechocystis Hb. However, Synel Hb exhibited lower thermal stability compared to mesophilic hemoglobins. Overall, the data is suggestive of the structural sturdiness of Synel Hb, which probably corroborates its origin in extreme thermophilic conditions. The stable globin provides scope for further investigation and may lead to new insights with possibilities for engineering stability in hemoglobin-based oxygen carriers.


Subject(s)
Globins , Synechocystis , Globins/chemistry , Globins/metabolism , Chlorophyll A , Hemoglobins/chemistry , Synechocystis/metabolism , Heme/chemistry , Hydrogen-Ion Concentration
9.
Chem Asian J ; 18(9): e202300086, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36919823

ABSTRACT

Highly electron-deficient heteroatom (N, S, Se) bay-annulated PBIs exhibiting ordered columnar phase over a wide mesomorphic range including ambient temperature are reported in this manuscript. These compounds with six peripheral n-decyloxy chains exhibited absorption spectra with high molar extinction coefficients, electron-deficient nature and self-assembling behaviour. A detailed comparison with the PBIs bearing six peripheral n-decyl chains was also carried out to get the valuable insights on the structure-property relations in this important class of organic semiconductors. Both of the PBI series were tested for their charge carrier mobility by space charge limited current method and found that they exhibit ambipolar conductivity. This is in contrary to the vast body of literature, where most of the PBI based semiconductors exhibit electron transport behaviour. In general, PBIs derived from tri-n-alkyl anilines exhibit higher mobility values than the PBIs derived from tri-n-alkoxy anilines. Especially, the ambipolar S-annulated PBI derived from tri-n-alkyl aniline exhibited highest hole (8.39×10-3  cm2 /V.s) and electron (1.5×10-2  cm2 /V.s) mobility values and promising for the application in organic electronics.

10.
Chemosphere ; 324: 138203, 2023 May.
Article in English | MEDLINE | ID: mdl-36842561

ABSTRACT

Time-synchronized, 24 h integrated PM2.5 trace element (TE) measurements made as a part of the COALESCE project (Venkataraman et al., 2020) at Bhopal, Mesra, and Mysore during all of 2019 were analyzed in this study. The concentrations of 15 key elements ranged between 0.05 ng m-3 and 50 µg m-3 across the study sites. Pronounced seasonal variation of elements from multiple source classes showed that the crustal origin elements (Al, Si, Fe, Ti, and Ca) peaked during the pre-monsoon season, while the anthropogenic activities driven element (P, S, K, V, Mn, Cu, Zn, and Pb) concentrations increased during the winter and post-monsoon seasons. Spearman correlation coupled with hierarchical clustering separated the matrix of elements into three common clusters at all sites, corresponding to crustal sources, combustion and biomass burning emissions, and industrial/non-exhaust vehicular emissions, respectively. Furthermore, episodes of metal pollution throughout the year were examined using characteristic radar charts of TEs to identify the association between TE sources and poor air quality. For example, maximum metal pollution in Bhopal occurred during the post-monsoon season, attributable to biomass burning, dust storms, industrial and non-exhaust vehicular emissions. Finally, an ecological risk assessment revealed that the risk index was higher than the threshold value of 600 for all heavy metals at all sites. Pb, Cu, and Zn were the top contributors to 'extremely high risk' amongst all heavy metals. Overall, the results show that although TE concentrations at all three locations were much lower than in other urban locations in India, the risk from heavy metals to the ecosystem (and likely to human health) cannot be ignored. The findings warrant a full source apportionment of fine PM to better identify TE-rich source contributions and future studies to examine the atmospheric processing and eco-system uptake of TEs.


Subject(s)
Air Pollutants , Metals, Heavy , Trace Elements , Humans , Air Pollutants/analysis , Vehicle Emissions/analysis , Trace Elements/analysis , Environmental Monitoring , Ecosystem , Lead , Seasons , India , Particulate Matter/analysis
11.
Chemosphere ; 308(Pt 2): 136420, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36103921

ABSTRACT

As part of the COALESCE (Carbonaceous Aerosol Emissions, Source apportionment and Climate Impacts) campaign, ambient PM2.5 was collected at two regional sites (Bhopal and Mysuru) in India during 2019. We utilized organic carbon (OC), elemental carbon (EC) and water-soluble inorganic ions together with δ13C values, to better understand total carbon (TC) sources at these locations. The annual average δ13C values (-26.2 ± 0.6‰) at Mysuru and Bhopal (-26.6 ± 0.6‰) were comparable. However, at Mysuru, except during winter, day-to-day variability was much lower (narrow range of -26.8 to -26.0‰) than that at Bhopal (range: -28.1 to -24.7‰), suggesting that TC was contributed by few sources, likely dominated by vehicular emissions. Seasonal average δ13C values at Bhopal increased slightly (-25.8 ± 0.5‰) during the winter (Jan-Feb) and decreased (-27.0 ± 0.3‰) during the monsoon (Jun-Sep) season compared to the annual average. The decrease in δ13C values during the monsoon season was likely driven by enhanced secondary organic aerosol formation. Further, based on MODIS derived fire spots and back trajectories, we infered that the δ13C values (-27.5 to -26.0‰) in Bhopal during the post-monsoon season (Oct-Dec) were indicative of dominant biomass burning contributions. The inorganic ions/TC ratio during this season suggested that biomass burning aerosol was aged and may have been transported from crop residue burning in the Indo-Gangetic plains. At Mysuru, like the trend at Bhopal, the δ13C values during the monsoon season were lower than those during the winter season. Finally, δ13C values were input to a Bayesian model-MixSIAR to demonstrate the usefulness of such models in apportioning TC. In its simplest implementation, the model separated TC sources into fossil fuel emissions and non-fossil fuel sources . Fossil fuel combustion emissions accounted for 47 ± 19% and 62 ± 22% of the TC at Bhopal and Mysuru, respectively.


Subject(s)
Air Pollutants , Vehicle Emissions , Aerosols/analysis , Air Pollutants/analysis , Bayes Theorem , Carbon/analysis , Environmental Monitoring , Fossil Fuels , Ions , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis , Water
12.
Environ Pollut ; 284: 117385, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34051581

ABSTRACT

PM2.5 and PM10 fugitive dust samples from multiple sources (construction, demolition, industrial, agricultural fields, and bare ground) were collected in triplicate for each size bin, from 18 distinct locations in and around Bhopal, central India. The dust samples were dried, sieved, and re-suspended in a chamber fitted with a suitable sampling system, to collect PM2.5 and PM10 samples onto Teflon and Quartz filters. The filters were subjected to gravimetric and chemical analyses. Trace elements, water-soluble ions, and thermal-optical carbon fractions were quantified using a variety of analyses. These species were then used to develop PM10 and PM2.5 chemical source profiles of the fugitive dust sources. As expected, crustal species were abundant in all source categories. For industrial dust, Fe contribution to mass in both size fractions was about 11.4% and above the upper continental crustal abundance. Further, the source profiles generated for each source were different from their counterparts in the US EPA SPECIATE database and profiles reported in literature. Thus, it will be useful to utilize profiles generated in this study to enhance receptor model performance for the study region. However, collinearity analysis of the profiles revealed that PM10 agricultural and bare ground dust; and PM2.5 construction and demolition dust profile pairs may not be separated by receptor models. Finally, a human health risk assessment revealed that construction and industrial dust may pose significant risk to the population. The Incremental Lifetime Cancer Risk (ILCR) metric revealed that adults (2 × 10-5) and children (1 × 10-5) were susceptible to cancer risk from exposure to metals in PM2.5 fugitive dust. Further, children were more vulnerable than adults. This finding merits further investigation of oxidation state and solubility/bioavailability of Cr and Ni in fugitive dusts.


Subject(s)
Air Pollutants , Trace Elements , Adult , Air Pollutants/analysis , Child , Dust/analysis , Environmental Monitoring , Humans , India , Particle Size , Particulate Matter/analysis , Trace Elements/analysis
13.
J Contemp Dent Pract ; 17(8): 670-4, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27659086

ABSTRACT

INTRODUCTION: Dental implants are one of the common lines of treatment used for the treatment of missing tooth. Various risk factors are responsible for the failure of the dental implants and occurrence of postoperative complications. Bruxism is one such factor responsible for the failure of the dental implants. The actual relation between bruxism and dental implants is a subject of long-term controversy. Hence, we carried out this retrospective analysis to assess the complications occurring in dental implants in patients with and without bruxism. MATERIALS AND METHODS: The present study included 1100 patients which were treated for rehabilitation by dental implant procedure at 21 dental offices of Ghaziabad (India) from 2004 to 2014. Analyzing the clinical records of the patients along with assessing the photographs of the patients was done for confirming the diagnosis of bruxism. Clinical re-evaluation of the patients, who came back for follow-up, was done to confirm the diagnosis of bruxism. Systemic questionnaires as used by previous workers were used to evaluate the patients about the self-conscience of the condition. Estimation of the mechanical complications was done only in those cases which occurred on the surfaces of the restoration of the dental implants. All the results were analyzed by Statistical Package for Social Sciences (SPSS) software. Student's t-test and Pearson's chi-square test were used to evaluate the level of significance. RESULTS: In both bruxer and non-bruxers, maximum number of dental implants was placed in anterior maxillary region. Significant difference was obtained while comparing the two groups for dimensions of the dental implants used. On comparing the total implant failed cases between bruxers and non-bruxers group, statistically significant result was obtained. Statistically significant difference was obtained while comparing the two study groups based on the health parameters, namely hypertension, diabetes, and smoking habit. CONCLUSION: Success of dental implant is significantly affected by bruxism. Special attention is required in such patients while doing treatment planning. CLINICAL SIGNIFICANCE: For the long-term clinical success and survival of dental implants in patients, special emphasis should be given on the patient's deleterious oral habits, such as bruxism as in long run, they influence the stability of dental implants.


Subject(s)
Bruxism/complications , Dental Implants , Dental Restoration Failure/statistics & numerical data , Diabetes Complications , Female , Humans , Hypertension/complications , Male , Retrospective Studies , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...