Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(18): 19940-19955, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737040

ABSTRACT

Fresh Wolffia globosa, the smallest flowering plant well-known for its favorable nutrient composition and rich content of bioactive compounds, was subjected to boiling, freeze-thawing, and mechanical crushing to reduce its excessive (95-96%) moisture level and consequent drying time. The resultant three wolffia matrixes were filtered through a plankton net to fractionate into the residue and the filtrate. The proximate composition, bioactive metabolites, antioxidant activity, and characterization of bioactive metabolites by LC-ESI-QTOF-MS/MS and Fourier transform infrared spectroscopy were made from oven-dried residues and filtrates. Among residues, crude protein (29.84%), crude lipid (5.77%), total carotenoids (TCC; 722.8 µg/g), and vitamin C (70.02 mg/100 g) were the highest (p < 0.05) for freeze-thawing against higher ash (7.99%), total phenolic content (TPC; 191.47 mg GAE g-1 dry weight), total flavonoid content (TFC; 91.54 mg QE g-1 dry weight), DPPH activity (47.46%), and ferric reducing antioxidant power (FRAP) activity (570.19 µmol FeSO4 equiv/mg) for the crushed counterpart and Chl-b in residues from boiling. No significant variation was evident in the total tannin content (TTC). Among filtrates, higher total phenolic content (773.29 mg GAE g-1 dry weight), TFC (392.77 mg QE g-1 dry weight), TTC (22.51 mg TAE g-1), and antioxidant activity as DPPH activity (66.46%) and FRAP (891.62 µmol FeSO4 equiv/mg) were evident for boiling, while that from crushing exhibited the highest TCC (1997.38 µg/g DM). LC-ESI-QTOF-MS/MS analysis identified 72 phenolic compounds with the maximum in residue (33) and filtrate (33) from freeze-thawing, followed by crushing (18 and 19) and boiling (14 and 13) in order, respectively. The results indicated that the predrying cell rupturing method significantly impacted quantitative, as well as qualitative compositions of residues and filtrates from fresh wolffia.

2.
Environ Sci Pollut Res Int ; 31(22): 31731-31751, 2024 May.
Article in English | MEDLINE | ID: mdl-38652188

ABSTRACT

Aquaculture witnessed a remarkable growth as one of the fastest-expanding sector in the food production industry; however, it faces serious threat from the unavoidable impacts of climate change. Understanding this threat, the present review explores the consequences of climate change on aquaculture production and provides need based strategies for its sustainable management, with a particular emphasis on climate-resilient approaches. The study examines the multi-dimensional impacts of climate change on aquaculture which includes the shifts in water temperature, sea-level rise, ocean acidification, harmful algal blooms, extreme weather events, and alterations in ecological dynamics. The review subsequently investigates innovative scientific interventions and climate-resilient aquaculture strategies aimed at strengthening the adaptive capacity of aquaculture practices. Some widely established solutions include selective breeding, species diversification, incorporation of ecosystem-based management practices, and the implementation of sustainable and advanced aquaculture systems (aquaponics and recirculating aquaculture systems (RAS). These strategies work towards fortifying aquaculture systems against climate-induced disturbances, thereby mitigating risks and ensuring sustained production. This review provides a detailed insight to the ongoing discourse on climate-resilient aquaculture, emphasizing an immediate need for prudent measures to secure the future sustainability of fish food production sector.


Subject(s)
Aquaculture , Climate Change , Animals , Ecosystem
3.
PLoS One ; 18(11): e0287934, 2023.
Article in English | MEDLINE | ID: mdl-37922256

ABSTRACT

The objective of this study was to reveal the growth, colouration and gonado-physiological changes due to the exogenous aromatase inhibitor (AIs) in an ornamental fish. 17α-methyltestosterone (MT) and letrozole (LET) were used as potential AIs. The AI were supplemented with a gel-based feed (LET: 50, 100, 150 and MT: 12.5, 25, 37.5 mg/kg feed) in Rosy barb, Pethia conchonius fry. The fishes were reared in a 45-L glass tank using AI treated gel-based feed for 3 months. Growth in AI-based diets was reduced but the reduction was minimal compared to the control. At 25 mg/kg feed of 17 MT, the highest male proportion (84.72% 6.05%) was recorded, which was significantly higher (P≤0.05) than other groups. L*, a*, and b* values showed that 17α-MT-fed groups had brighter coloration (P≤0.05). Histological sections showed that LET-17α-MT suppressed ovarian development, causing atretic oocytes. Testicular development was unaffected. 25 mg/kg-treated feed increased SOD, CAT, GST, and GPX. The AI (MT) at 25 mg/kg gel-based feed could therefore be utilised for musculinization without impacting growth, colour, and antioxidant activity of rosy barb, which serves the entire male population in the ornamental fish sector.


Subject(s)
Aromatase Inhibitors , Cyprinidae , Animals , Male , Aromatase Inhibitors/pharmacology , Letrozole/pharmacology , Methyltestosterone/pharmacology , Diet
4.
Article in English | MEDLINE | ID: mdl-37523086

ABSTRACT

Seafoods are rich in untapped bioactive compounds that have the potential to provide novel ingredients for the development of commercial functional foods and pharmaceuticals. Unfortunately, a large portion of waste or discards is generated in commercial processing setups (50-80%), which is wasted or underutilized. These by-products are a rich source of novel and valuable biomolecules, including bioactive peptides, collagen and gelatin, oligosaccharides, fatty acids, enzymes, calcium, water-soluble minerals, vitamins, carotenoids, chitin, chitosan and biopolymers. These fish components may be used in the food, cosmetic, pharmaceutical, environmental, biomedical and other industries. Furthermore, they provide a viable source for the production of biofuels. As a result, the current review emphasizes the importance of effective by-product and discard reduction techniques that can provide practical and profitable solutions. Recognizing this, many initiatives have been initiated to effectively use them and generate income for the long-term sustainability of the environment and economic framework of the processing industry. This comprehensive review summarizes the current state of the art in the sustainable valorisation of seafood by-products for human consumption. The review can generate a better understanding of the techniques for seafood waste valorisation to accelerate the sector while providing significant benefits.

5.
Biomolecules ; 10(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32630018

ABSTRACT

Several pharmacological properties are attributed to ergot alkaloids as a result of their antibacterial, antiproliferative, and antioxidant effects. Although known for their biomedical applications (e.g., for the treatment of glaucoma), most ergot alkaloids exhibit high toxicological risk and may even be lethal to humans and animals. Their pharmacological profile results from the structural similarity between lysergic acid-derived compounds and noradrenalin, dopamine, and serotonin neurotransmitters. To reduce their toxicological risk, while increasing their bioavailability, improved delivery systems were proposed. This review discusses the safety aspects of using ergot alkaloids in ocular pharmacology and proposes the development of lipid and polymeric nanoparticles for the topical administration of these drugs to enhance their therapeutic efficacy for the treatment of glaucoma.


Subject(s)
Ergot Alkaloids/pharmacokinetics , Ergot Alkaloids/therapeutic use , Eye Diseases/drug therapy , Administration, Topical , Animals , Biological Availability , Ergot Alkaloids/chemistry , Humans , Lipids/chemistry , Nanoparticles , Polymers/chemistry
6.
Expert Opin Drug Deliv ; 17(3): 357-377, 2020 03.
Article in English | MEDLINE | ID: mdl-32064958

ABSTRACT

Introduction: From a biopharmaceutical standpoint, the skin is recognized as an interesting route for drug delivery. In general, small molecules are able to penetrate the stratum corneum, the outermost layer of the skin. In contrast, the delivery of larger molecules, such as peptides and proteins, remains a challenge. Nanoparticles have been exploited not only to enhance skin penetration of drugs but also to expand the range of molecules to be clinically used.Areas covered: This review focus on Solid lipid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) for skin administration. We discuss the selection criteria for lipids, surfactants, and surface modifiers commonly in use in SLN/NLC, their production techniques, and the range of drugs loaded in these lipid nanoparticles for the treatment of skin disorders.Expert opinion: Depending on the lipid and surfactant composition, different nanoparticle morphologies can be generated. Both SLN and NLC are composed of lipids that resemble those of the skin and sebum, which contribute to their enhanced biocompatibility, with limited toxicological risk. SLN and NLC can be loaded with very chemically different drugs, may provide a tunable release profile, can be produced in a sterilized environment, and be scaled-up without the need for organic solvents.


Subject(s)
Drug Delivery Systems , Lipids/chemistry , Nanoparticles , Administration, Cutaneous , Drug Carriers/chemistry , Humans , Nanostructures , Skin/metabolism , Skin Diseases/drug therapy , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...