Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(29): 35105-35112, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34259497

ABSTRACT

Low turn-on (knee) voltage (∼0.3 V) Schottky-diode behavior of a four-layer (4L) MoS2/GaN junction is achieved by optimizing the in situ interface preparation of the GaN substrate prior to MoS2 overlayer growth in a vacuum system using metallic molybdenum and hydrogen sulfide gas as precursors. The process leads to a clean nitrogen-terminated GaN surface that bonds well to the MoS2 film revealing a 2 × 2 reconstruction at the interface observed in low-energy electron diffraction (LEED). Atomic force microscopy and X-ray photoelectron spectroscopy provide clear images of the GaN terraces through the MoS2 overlayer confirming close adhesion and absence of oxygen and other contaminants. Density functional theory calculations predict the formation of the 2 × 2 superstructure at a clean interface. Transport measurements show diode behavior at an on/off ratio of ∼105 for ±1 V with a forward direction for the positive voltage applied to the MoS2 layer. Combining transport and photoelectron spectroscopy measurements with theory, we deduce a Fermi-level position in the MoS2 gap consistent with interface charge transfer from MoS2 to the substrate. The high performance of the MoS2/Gan diode highlights the technological potential of devices based on GaN/MoS2 interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...