Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Photochem Photobiol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943225

ABSTRACT

Elevated global pollution level is the prime reason that contributes to the onset of various harmful health diseases. The products of Biginelli reaction are enormously used in the pharmaceutical industry as they have antiviral, antibacterial, and calcium channel modulation abilities. This work reports a novel eosin Y sensitized boron graphitic carbon nitride (EY-Ben-g-C3N4) as a photocatalyst that efficiently produced 3,4-dihydropyrimidine-2-(1H)-one by the Biginelli reaction of benzaldehyde, urea, and methyl acetoacetate. The photocatalyst EY-Ben-g-C3N4 showed a successful generation of 3,4-dihydropyrimidine-2-(1H)-one (Biginelli product) in good yield via photocatalysis which is an eco-friendly method and has facile operational process. In addition to the production of Biginelli products, the photocatalyst also showed a remarkable NADH regeneration of 81.18%. The incorporation of g-C3N4 with boron helps increase the surface area and the incorporation of eosin Y which is an inexpensive and non-toxic dye, and in Ben-g-C3N4, enhanced the light-harvesting capacity of the photocatalyst. The production of 3,4-dihydropyrimidine-2-(1H)-one and NADH by the EY-Ben-g-C3N4 photocatalyst is attributed to the requisite band gap, high molar absorbance, low rate of charge recombination, and increased capacity of the photocatalyst to harvest solar light energy.

2.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38856063

ABSTRACT

We performed high-level ab initio quantum chemical calculations, incorporating higher-order excitations, spin-orbit coupling (SOC), and the Gaunt interaction, to calculate the electron affinities (EAs) of alkaline earth (AE) metal atoms (Ca, Sr, Ba, and Ra), which are notably small. The coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method is insufficient to accurately calculate the EAs of AE metal atoms. Higher-order excitations proved crucial, with the coupled-cluster singles, doubles, and triples with perturbative quadruples [CCSDT(2)Q] method effectively capturing dynamic electron correlation effects. The contributions of SOC (ΔESOs) to the EAs calculated using the multireference configuration interaction method with the Davidson correction, including SOC, positively enhance the EAs; however, these contributions are overestimated. The Dirac-Hartree-Fock (DHF)-CCSD(T) method addresses this overestimation and provides reasonable values for ΔESO (ΔESO-D). Employing additional sets of diffuse and core-valence correlation basis sets is critical for accurately calculating the EAs of AE metal atoms. The contributions of the Gaunt interaction (ΔEGaunt) to the EAs of AE metal atoms are negligible. Notably, the CCSDT(2)Q with the complete basis set limit + ΔESO-D + ΔEGaunt produced EA values for Ca, Sr, and Ba that closely aligned with experimental data and achieved accuracy exceeding the chemical accuracy. Based on our findings, the accurately proposed EA for Ra is 9.88 kJ/mol.

3.
Chem Biodivers ; 21(6): e202400329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590163

ABSTRACT

The need for sunlight chemical renewal and contemporary organic transformation has fostered the advancement of environmentally friendly photocatalytic techniques. For the first time, we report on the novel crafting of a bright future with selenium-infused Eosin-B (Sein-E-B) nanocomposite photocatalysts in this work. The Sein-E-B nanocomposite materials were created using a hydrothermal process for solar chemical regeneration and organic transformation under visible light. The synthesized samples were subjected to UV-DRS-visible spectroscopy, FT-IR, SEM, EDX, EIS and XRD analysis. The energy band gap of the Sein-E-B nanocomposite photocatalyst was measured using UV-DRS, and the result was around 2.06 eV. to investigate the generated Sein-E-B catalytic activity as a nanocomposite for 1,4-NADH/NADPH re-formation and C-N bond activation. This novel photocatalyst offers a promising alternative for the regeneration of solar chemicals and C-N bond creation between pyrrole and aryl halides.


Subject(s)
Nanocomposites , Catalysis , Molecular Structure , Nanocomposites/chemistry , Photochemical Processes , Selenium/chemistry
4.
Chemosphere ; 353: 141491, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395365

ABSTRACT

Photocatalysis has emerged as a promising approach for generating solar chemical and organic transformations under the solar light spectrum, employing polymer photocatalysts. In this study, our aim is to achieve the regeneration of NADH and fixation of nitroarene compounds, which hold significant importance in various fields such as pharmaceuticals, biology, and chemistry. The development of an in-situ nature-inspired artificial photosynthetic pathway represents a challenging task, as it involves harnessing solar energy for efficient solar chemical production and organic transformation. In this work, we have successfully synthesized a novel artificial photosynthetic polymer, named TFc photocatalyst, through the Friedel-Crafts alkylation reaction between triptycene (T) and a ferrocene motif (Fc). The TFC photocatalyst is a promising material with excellent optical properties, an appropriate band gap, and the ability to facilitate the regeneration of NADH and the fixation of nitroarene compounds through photocatalysis. These characteristics are necessary for several applications, including organic synthesis and environmental remediation. Our research provides a significant step forward in establishing a reliable pathway for the regeneration and fixation of solar chemicals and organic compounds under the solar light spectrum.


Subject(s)
NAD , Solar Energy , Photosynthesis , Light , Sunlight , Organic Chemicals/chemistry
5.
Chem Biol Drug Des ; 103(1): e14418, 2024 01.
Article in English | MEDLINE | ID: mdl-38230791

ABSTRACT

Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in-silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK-MEL-28, A431, and SCC-12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC-12 squamous carcinoma cell lines. The most active compounds 11 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 2.9 µM, SKMEL-28: IC50 = 4.9 µM, A375: IC50 = 6.7 µM) and 13 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 3.3 µM, SKMEL-28: IC50 = 13.8 µM, A375: IC50 = 17.1 µM), significantly and dose-dependently induced apoptosis of SCC-12 and SK-MEL-28 cells, as evidenced by the suppression of Bcl-2 and upregulation of Bax, cleaved caspase-3, caspase-9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web-based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein-kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure-activity relationship through the preparation and biological evaluation of analogs.


Subject(s)
Antineoplastic Agents , Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Hedgehog Proteins/metabolism , Skin Neoplasms/drug therapy , Apoptosis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor , Cell Proliferation , Cell Line, Tumor , Molecular Structure , rho-Associated Kinases/metabolism
6.
Photochem Photobiol ; 100(1): 41-51, 2024.
Article in English | MEDLINE | ID: mdl-37458262

ABSTRACT

Aloe vera-derived graphene (ADG) coupled system photocatalyst, mimicking natural photosynthesis, is one of the most promising ways for converting solar energy into ammonia (NH3 ) and nicotinamide adenine dinucleotide (NADH) that have been widely used to make the numerous chemicals such as fertilizer and fuel. In this study, we report the synthesis of the aloe vera-derived graphene-coupled phenosafranin (ADGCP) acting as a highly efficient photocatalyst for the generation of NH3 and regeneration of NADH from nitrogen (N2 ) and oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The results show a benchmark instance for mimicking natural photosynthesis activity as well as the practical applications for the solar-driven selective formation of NH3 and the regeneration of NADH by using the newly designed photocatalyst.


Subject(s)
Aloe , Graphite , Phenazines , NAD/metabolism , Ammonia , Aloe/metabolism , Photosynthesis
7.
J Family Med Prim Care ; 12(10): 2313-2317, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38074247

ABSTRACT

Introduction: Neonatal sepsis is an infection in newborns that may be caused by bacteria, fungi, or viruses and has a high death and morbidity rate. The clinical presentation of sepsis may be rather general, making it challenging to make a diagnosis. While blood culture is the most accurate method to diagnose sepsis, it is also time-consuming. Because of this, it is crucial to locate other biomarkers like C-reactive protein (CRP), high sensitive C-reactive protein (hs-CRP), and procalcitonin (PCT) that may aid in early identification. Aim: To learn about the bacterial composition of suspected cases of neonatal sepsis in a tertiary care hospital in western Uttar Pradesh and how that composition relates to the biomarkers CRP, hs-CRP, and PCT. Materials and Methods: Hundred people who fulfilled the study's inclusion criteria were included. All neonatal venous blood samples have been obtained after receiving written informed permission from either parent. The conventional method was used to perform the blood culture. The ELISA technique has been used to determine hs-CRP along with serum PCT levels, while the latex agglutination test was utilized for CRP detection. Result: A total of 100 cases were enrolled, 78% presented within 3 days of birth. Blood culture was positive in 33 neonates (33%). There were 17 Gram-positive, 15 Gram-negative, and in all 2 cases with poly bacterial culture. CRP positivity rate was significantly higher in culture positive (57.6%) as compared to culture-negative neonates (25.4%). It was shown that a CRP >6 mg/l level was sensitive at 57.6% and specific at 74.6%. hs-CRP has a 100% sensitivity and 47.8% specificity. The PCT's sensitivity was 69.7%, whereas its specificity was 89.6%. Conclusion: PCT is more specific for detecting sepsis, but hs-CRP is more sensitive than CRP. The combination of PCT along with hs-CRP has a negative predictive value and high sensitivity compared to other markers. Thus, the most accurate predictors of neonatal sepsis would be a combination of factors.

8.
Photochem Photobiol ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088069

ABSTRACT

The photocatalytic oxidation and generation/regeneration of amines to imines and leucodopaminechrome (LDC)/NADH are subjects of intense interest in contemporary research. Imines serve as crucial intermediates for the synthesis of solar fuels, fine chemicals, agricultural chemicals, and pharmaceuticals. While significant progress has been made in developing efficient processes for the oxidation and generation/regeneration of secondary amines, the oxidation of primary amines has received comparatively less attention until recently. This discrepancy can be attributed to the high reactivity of imines generated from primary amines, which are prone to dehydrogenation into nitriles. In this study, we present the synthesis and characterization of a novel polymer-based photocatalyst, denoted as PMMA-DNH, designed for solar light-harvesting applications. PMMA-DNH incorporates the light-harvesting molecule dinitrophenyl hydrazine (DNH) at varying concentrations (5%, 10%, 20%, 30%, and 40%). Leveraging its high molar extinction coefficient and slow charge recombination, the 30% DNH-incorporated PMMA photocatalyst proves to be particularly efficient. This photocatalytic system demonstrates exceptional yields (96.5%) in imine production and high generation/regeneration rates for LDC/NADH (65.27%/78.77%). The research presented herein emphasizes the development and application of a newly engineered polymer-based photocatalyst, which holds significant promise for direct solar-assisted chemical synthesis in diverse commercial applications.

9.
Photochem Photobiol ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054563

ABSTRACT

Sulfur-doped Eosin-B (SDE-B) photocatalysts were synthesized for the first time utilizing sublimed sulfur (S8 ) as a dopant in an in situ thermal copolymerization technique. Sulfur doping not only increased Eosin-B (E-B) absorption range for solar radiation but also improved fixation and oxygenation capabilities. The doped sulfur bridges the S-S bond by substituting for the edge bromine of the E-B bond. The improved photocatalytic activity of SDE-B in the fixation and oxygenation of NAD+ /NADP+ and sulfides using solar light is attributed to the photo-induced hole of SDE-B's high fixation and oxygenation capacity, as well as an efficient suppression of electron and hole recombination. The powerful light-harvesting bridge system created using SDE-B as a photocatalyst works extremely well, resulting in high NADH/NADPH regeneration (79.58/76.36%) and good sulfoxide yields (98.9%) under solar light. This study focuses on the creation and implementation of a sulfur-doped photocatalyst for direct fine chemical regeneration and organic transformation.

10.
Photochem Photobiol ; 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102890

ABSTRACT

A solvent-free sulfur-bridge-eosin-Y (SBE-Y) polymeric framework photocatalyst was prepared for the first time through an in situ thermal polymerization route using elemental sulfur (S8 ) as a bridge. The addition of a sulfur bridge to the polymeric framework structure resulted in an allowance of the harvesting range of eosin-Y (E-Y) for solar light. This shows that a wider range of solar light can be used by the bridge material's photocatalytic reactions. In this context, supercharged solar spectrum: enhancing light absorption and hole oxidation with sulfur bridges. This suggests that the excited electrons and holes through solar light can contribute to oxidation-reduction reactions more potently. As a result, the photocatalyst-enzyme attached artificial photosynthesis system developed using SBE-Y as a photocatalyst performs exceptionally well, resulting in high 1,4-NADH regeneration (86.81%), followed by its utilization in the exclusive production of formic acid (210.01 µmol) from CO2 and synthesis of fine chemicals with 99.9% conversion yields. The creation of more effective photocatalytic materials for environmental clean-up and other applications that depend on the solar light-driven absorption spectrum of inorganic and organic molecules could be one of the practical ramifications of this research.

11.
Cureus ; 15(10): e47246, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022348

ABSTRACT

BACKGROUND: Tuberculosis (TB) in children is neglected, mainly due to a lack of sensitive diagnostic tools. Paediatric TB is now a global priority. More paediatric TB cases are being recorded as a result of the introduction of Xpert® Mycobacterium tuberculosis (MTB)/rifampicin (RIF) (Cepheid Inc., Sunnyvale, USA). This study was undertaken to evaluate the performance of Xpert MTB/RIF in the diagnosis of pulmonary TB in children. METHODS: We recruited 70 paediatric patients with probable pulmonary TB and their gastric aspirate (GA), and induced sputum (IS) samples were collected between January 2021 and June 2022 in Saifai, Etawah, Uttar Pradesh, at the Microbiology Department of the Uttar Pradesh University of Medical Sciences (U.P.U.M.S.). All samples were subjected to smear examination, Bacterial Activation of Continuous Temperature and Environmental Control - Mycobacterial Growth Indicator Tube (BACTEC-MGIT) culture, and Xpert MTB/RIF. RESULTS:  The specimens included 70 GAs and 70 IS samples. The total number of specimens were 140 and we collected GA as well as IS from each of the patient enrolled in the study. When compared to microscopy, GeneXpert provides a quicker and earlier detection of paediatric TB. The sensitivity of the cartridge-based nucleic acid amplification test (CBNAAT) against mycobacterial growth indicator tube (MGIT) was 75.0% for GA samples and 63.64% for IS samples. CONCLUSION: Paediatric TB, owing to its paucibacillary nature and difficulty in the collection of samples, makes the diagnosis difficult by conventional methods. Our study shows that smear and culture yield in GA samples are superior to those of IS samples and the sensitivity of Xpert MTB/RIF assay is also significantly different in GA and IS samples, but a combination of GA and IS yielded the best results.

12.
Photochem Photobiol ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740555

ABSTRACT

The combination of excellent electronic properties and thermal stability positions orange-derived graphene quantum dots (GQDs) as promising materials for solar light-based applications. Researchers are actively exploring their potential in fields such as photovoltaics, photocatalysis, optoelectronics, and energy storage. Their abundance, cost-effectiveness, and eco-friendly nature further contribute to their growing relevance in cutting-edge scientific research. Furthermore, only GQDs are not much more effective in the UV-visible region, therefore, required band gap engineering in GQDs material. In this context, we designed GQDs-based light harvesting materials, which is active in UV-visible region. Herein we synthesized GQDs coupled with 2,6-diaminoanthrquninone (AQ), that is, GQDs@AQ light harvesting photocatalyst the first time for the oxidation of sulfide to sulfoxide under visible light. For the integrating reactions of sulfide in aerobic conditions under visible light by GQDs@AQ photocatalyst exhibit utmost higher photocatalytic activity than simple GQDs due to low molar extinction coefficient and slow recombination charges. The use of GQDs@AQ light harvesting photocatalyst, showed the excellent organic transformation efficiency of sulfide to sulfoxide with excellent yield (94%). The high efficiency and excellent yield of 94% indicate the effectiveness of GQDs@AQ as a photocatalyst for these specific organic transformations.

13.
Chemosphere ; 341: 139697, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37567274

ABSTRACT

Indeed, the development of ecologically benign molecular fabrication methods for highly efficient graphene quantum dots-based photocatalysts is of great significant. Graphene quantum dots-based photocatalysts have promising applications in various field, including environmental remediation, energy conversion, and splitting of water. However, ensuring resource reusability and minimizing the environmental impact are crucial considerations in the development. From this perspective, attention has also been paid to the creation of easy to make solar light harvesting graphene quantum dots-based photocatalysts for synthesising pharmaceuticals and functional imines compounds. Imines are excellent significant building blocks in pharmaceutical chemistry and excellent examples of these valuable compounds' synthetic intermediates, and the environmentally friendly oxidative synthesis of imines from amines. Therefore, herein, we designed a facile and efficient condensation route to synthesize the Nen-GQDs@PH photocatalyst. This route involves coupling of 2,4-dinitrophenylhydrazine (PH) with nitrogen-enriched graphene quantum dots (Nen-GQDs). The Nen-GQDs@PH as photocatalyst functions in a highly selective and efficient manner, leading to high amines conversion efficiency to imines (95%). Our results highlight a novel and environmentally safe approach for generating highly selective imines from various types of amines, setting a new benchmark in the current research field.


Subject(s)
Graphite , Quantum Dots , Graphite/chemistry , Quantum Dots/chemistry , Amines/chemistry , Imines
14.
Cells ; 12(12)2023 06 20.
Article in English | MEDLINE | ID: mdl-37371141

ABSTRACT

The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.


Subject(s)
Biological Products , Dermatitis , Psoriasis , Humans , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Psoriasis/drug therapy , Sirolimus , Biological Products/pharmacology , Biological Products/therapeutic use
15.
Photochem Photobiol ; 99(6): 1384-1392, 2023.
Article in English | MEDLINE | ID: mdl-36794330

ABSTRACT

Photocatalysis is one of the most promising methods for producing organic compounds with a renewable source of energy. Two-dimensional covalent organic frameworks (2D COFs) are a type of polymer that has developed as a potential light-harvesting catalyst for artificial photosynthesis with a design-controllable platform that might be developed into a new type of cost-effective and metal-free photocatalyst. Here, we present a two-dimensional covalent organic framework synthesis technique as a low-cost and highly efficient visible light active flexible photocatalyst for C-H bond activation and dopamine regeneration. 2D COF were synthesized from tetramino-benzoquinone (TABQ) and terapthaloyl chloride monomer through condensation polymerization reaction and the resultant photocatalyst have remarkable performance due to its visible light-harvesting capacity, appropriate band gap, and highly organized π-electron channels. The synthesized photocatalyst is capable to convert dopamine into leucodopaminechrome with a higher yield (77.08%) and also capable to activate the C-H bond between 4-nitrobenzenediazonium tetrafluoroborate and pyrrole.

16.
Photochem Photobiol ; 99(4): 1080-1091, 2023.
Article in English | MEDLINE | ID: mdl-36273273

ABSTRACT

Photocatalysis is a defendable manner for production of several organic chemicals, energy and its storage from solar energy. For the evolution of metal free, cost-effective catalyst a 2D composite has been appear as a photocatalyst. Here, we had reported the synthesis of a light harvesting composite as a photocatalyst which was assembled by a poly-condensation mechanism between graphitic carbon nitride and tetrakis(4-nitrophenyl) porphyrin and the resulting composite manifest the excellent light harvesting properties, suitable energy band and low charge recombination. The photocatalyst [(NO2 )4 TPP@g-C3 N4 ] enables the efficient photocatalytic production of nicotinamide adenine dinucleotide (NADH) from consumed NAD+ also the production of organic chemicals like 4-methoxybenzylimines from 4-methoxybenzylamines. The photocatalytic efficiency of the photocatalyst was estimated by the percentage of NADH regeneration and the percentage yield of organic transformations. It shows the tetrakis(4-nitrophenyl) porphyrin could enhance the charge transfer capacity of graphitic carbon nitride which shows excellent photocatalysis activities and organic transformations.

17.
Photochem Photobiol ; 99(4): 1097-1105, 2023.
Article in English | MEDLINE | ID: mdl-36539981

ABSTRACT

Photocatalytic processes triggered by graphene-based photocatalysts under solar light have sparked interest as a new sort of instrument for solar chemical synthesis. Herein we investigated self-assembled graphene quantum dots (GQDs)/NiSe-NiO composite photocatalyst for organic transformation as well as dye degradation. The synthesized GQDs/NiSe-NiO composite photocatalyst has an excellent suitable band gap, high molar extinction coefficient, low toxicity and chemical/thermal stability. The GQDs/NiSe-NiO composite photocatalyst emerges as a new standard for sulfur oxidation and dye degradation reactions under homemade LED light with high yield.

18.
J Environ Health Sci Eng ; 20(2): 889-898, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36406621

ABSTRACT

Biological wastewater treatment is mostly used in many industries to treat industrial influents. Treated water is consisting of an extremely high concentration of pathogenic microorganisms. Present work demonstrate the treatment of biologically treated sugar industry wastewater (BTSWW) using a low-frequency ultrasound (US). BTWSS consists of Enterobacter, Salmonella, and Escherichia Coli with a total coliform concentration of 2500 ± 300 CFU/mL. Experiments were performed using the individual effect of US, H2O2, and O3 and the combined effect of US with H2O2, O3, and H2O2 + O3. The complete removal of total coliform was obtained for the synergy effect of US with H2O2 and O3. The performance of the process was analyzed based on pseudo-first-order kinetic rate constant and synergy coefficient. The pseudo-first-order kinetic rate constant was 21.6 and 22.3 × 10-2 min-1 with a synergy coefficient of 2 and 1.9 for a combined effect of US with H2O2 and O3, respectively. Another advantage of the synergy of US and O3 was lower requirement of the initial dose of H2O2 (2.1 mM/L). The operational cost of the process was found to be $ 1.5 × 10-2 /MLD.

19.
Front Plant Sci ; 13: 984912, 2022.
Article in English | MEDLINE | ID: mdl-36204050

ABSTRACT

Crop yield varies considerably within agroecology depending on the genetic potential of crop cultivars and various edaphic and climatic variables. Understanding site-specific changes in crop yield and genotype × environment interaction are crucial and needs exceptional consideration in strategic breeding programs. Further, genotypic response to diverse agro-ecologies offers identification of strategic locations for evaluating traits of interest to strengthen and accelerate the national variety release program. In this study, multi-location field trial data have been used to investigate the impact of environmental conditions on crop phenological dynamics and their influence on the yield of mungbean in different agroecological regions of the Indian subcontinent. The present attempt is also intended to identify the strategic location(s) favoring higher yield and distinctiveness within mungbean genotypes. In the field trial, a total of 34 different mungbean genotypes were grown in 39 locations covering the north hill zone (n = 4), northeastern plain zone (n = 6), northwestern plain zone (n = 7), central zone (n = 11) and south zone (n = 11). The results revealed that the effect of the environment was prominent on both the phenological dynamics and productivity of the mungbean. Noticeable variations (expressed as coefficient of variation) were observed for the parameters of days to 50% flowering (13%), days to maturity (12%), reproductive period (21%), grain yield (33%), and 1000-grain weight (14%) across the environments. The genotype, environment, and genotype × environment accounted for 3.0, 54.2, and 29.7% of the total variation in mungbean yield, respectively (p < 0.001), suggesting an oversized significance of site-specific responses of the genotypes. Results demonstrated that a lower ambient temperature extended both flowering time and the crop period. Linear mixed model results revealed that the changes in phenological events (days to 50 % flowering, days to maturity, and reproductive period) with response to contrasting environments had no direct influence on crop yields (p > 0.05) for all the genotypes except PM 14-11. Results revealed that the south zone environment initiated early flowering and an extended reproductive period, thus sustaining yield with good seed size. While in low rainfall areas viz., Sriganganagar, New Delhi, Durgapura, and Sagar, the yield was comparatively low irrespective of genotypes. Correlation results and PCA indicated that rainfall during the crop season and relative humidity significantly and positively influenced grain yield. Hence, the present study suggests that the yield potential of mungbean is independent of crop phenological dynamics; rather, climatic variables like rainfall and relative humidity have considerable influence on yield. Further, HA-GGE biplot analysis identified Sagar, New Delhi, Sriganganagar, Durgapura, Warangal, Srinagar, Kanpur, and Mohanpur as the ideal testing environments, which demonstrated high efficiency in the selection of new genotypes with wider adaptability.

20.
J Family Med Prim Care ; 11(1): 37-43, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35309626

ABSTRACT

Healthcare systems deal with disease prevention, early detection, diagnosis, investigation, and timely, affordable, and safe treatment. For the delivery of services in the health sector, communication is the key to linking the service provider and the patients. Mobile technology in the recent past has rendered various platforms of communications for the healthcare system. Thus, in health, mobile technology has greatly contributed to time management and cost reduction for healthcare at every level including hospital visits to individual appointments with doctors, hence the convenience. With advancements in mobile technologies and the growing number of mobile users, newer opportunities have opened up for the use of mobiles for patient care. Emerging information and communication technologies with the help of the Internet of Things (IoT) have been instrumental in integrating different domains of the health sector with mobile technology. Thus, the technology may have the potential to become powerful medical tools to support the health sector at all levels of care. In this review, the concept, applications, and advantages of mobile technology for health and the present pandemic have been discussed. It also discusses mobile health technology, as a support system for convenient and safer healthcare for public health, and the opportunities to improve its applications for unseen future health crises.

SELECTION OF CITATIONS
SEARCH DETAIL
...