Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Infect Dis ; 10(5): 1679-1695, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38581700

ABSTRACT

Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Oxazolidinones , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Oxazolidinones/pharmacology , Oxazolidinones/chemistry , Animals , Microbial Sensitivity Tests , Mice , Humans , Linezolid/pharmacology , Linezolid/chemistry , Drug Resistance, Bacterial , Mitochondria/drug effects , Mitochondria/metabolism
2.
ACS Med Chem Lett ; 14(9): 1275-1283, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37736177

ABSTRACT

The continuing prevalence of drug-resistant tuberculosis threatens global TB control programs, highlighting the need to discover new drug candidates to feed the drug development pipeline. In this study, we describe a high-throughput screening hit (4-benzylpiperidin-1-yl)(1-(5-phenyl-1,3,4-oxadiazol-2-yl)piperidin-4-yl)methanone (P1) as a potent antitubercular agent. Structure-activity guided synthesis led to the discovery of several analogs with high in vitro potency. P1 was found to have promising potency against many drug-resistant strains, as well as drug-susceptible clinical isolates. It also showed cidality against Mtb growing in host macrophages. Whole genome sequencing of genomic DNA from resistant mutants raised to P1 revealed mutations in decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1). This novel oxadiazole scaffold expands the set of chemical tools for targeting a well-validated pathway to treat tuberculosis.

3.
Front Cell Infect Microbiol ; 11: 611304, 2021.
Article in English | MEDLINE | ID: mdl-33791235

ABSTRACT

More than two decades have elapsed since the publication of the first genome sequence of Mycobacterium tuberculosis (Mtb) which, shortly thereafter, enabled methods to determine gene essentiality in the pathogen. Despite this, target-based approaches have not yielded drugs that have progressed to clinical testing. Whole-cell screening followed by elucidation of mechanism of action has to date been the most fruitful approach to progressing inhibitors into the tuberculosis drug discovery pipeline although target-based approaches are gaining momentum. This review discusses scaffolds that have been identified over the last decade from screens of small molecule libraries against Mtb or defined targets where mechanism of action investigation has defined target-hit couples and structure-activity relationship studies have described the pharmacophore.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Discovery , Humans , Mycobacterium tuberculosis/genetics , Small Molecule Libraries , Tuberculosis/drug therapy
4.
ChemMedChem ; 16(12): 1917-1926, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33599108

ABSTRACT

The synthesis of 5-formyl-6-aryl-6H-indolo[3,2,1-de][1,5] naphthyridine-2-carboxylates by reaction between 1-formyl-9H-ß-carbolines and cinnamaldehydes in the presence of pyrrolidine in water with microwave irradiation is described. Pharmacophoric modification of the formyl group offered several new fused ß-carboline derivatives, which were investigated for their κ-opioid receptor (KOR) agonistic activity. Two compounds 4 a and 4 c produced appreciable agonist activity on KOR with EC50 values of 46±19 and 134±9 nM, respectively. Moreover, compound-induced KOR signaling studies suggested both compounds to be extremely G-protein-biased agonists. The analgesic effect of 4 a was validated by the increase in tail flick latency in mice in a time-dependent manner, which was completely blocked by the KOR-selective antagonist norBNI. Moreover, unlike U50488, an unbiased full KOR agonist, 4 a did not induce sedation. The docking of 4 a with the human KOR was studied to rationalize the result.


Subject(s)
Analgesics/pharmacology , Carbolines/pharmacology , Narcotic Antagonists/pharmacology , Pain/drug therapy , Receptors, Opioid, kappa/agonists , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Carbolines/chemical synthesis , Carbolines/chemistry , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Narcotic Antagonists/chemical synthesis , Narcotic Antagonists/chemistry
5.
Org Lett ; 18(23): 6010-6013, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27934367

ABSTRACT

A triple cooperative catalysis-mediated multicomponent reaction between 1-formyl-N-substituted-ß-carbolines, a terminal alkyne, and a secondary amine allows access to unprecedented polycyclic ß-carbolines via sequential A3-coupling and an intramolecular Csp2-Csp2 Friedel-Crafts arylation reaction. The reaction is successful in a dry inert atmosphere only with substrates bearing a methoxy-substituted benzyl group at the indole nitrogen. Conversely, treating 3-aminoindolizino[8,7-b]indoles (obtained after A3-coupling) with acid in the presence of H2O in air offers a general route to natural-alkaloid-like products.

SELECTION OF CITATIONS
SEARCH DETAIL
...