Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 205(5): 211, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37119317

ABSTRACT

N-terminal acetylation of proteins is an important post-translational modification (PTM) found in eukaryotes and prokaryotes. In bacteria, N-terminal acetylation is suggested to play various regulatory roles related to protein stability, gene expression, stress response, and virulence; however, the mechanism of such response remains unclear. The proteins, namely RimI/RimJ, are involved in N-terminal acetylation in mycobacteria. In this study, we used CRISPR interference (CRISPRi) to silence rimI/rimJ in Mycobacterium smegmatis mc2155 to investigate the physiological effects of N-terminal acetylation in cell survival and stress response. Repeat analysis of growth curves in rich media and biofilm analysis in minimal media of various mutant strains and wild-type bacteria did not show significant differences that could be attributed to the rimI/rimJ silencing. However, total proteome and acetylome profiles varied significantly across mutants and wild-type strains, highlighting the role of RimI/RimJ in modulating levels of proprotein acetylation in the cellular milieu. Further, we observed a significant increase in the minimum inhibitory concentration (MIC) (from 64 to 1024 µg ml-1) for the drug isoniazid in rimI mutant strains. The increase in MIC value for the drug isoniazid in the mutant strains suggests the link between N-terminal acetylation and antibiotic resistance. The study highlights the utility of CRISPRi as a convenient tool to study the role of PTMs, such as acetylation in mycobacteria. It also identifies rimI/rimJ genes as necessary for managing cellular response against antibiotic stress. Further research would be required to decipher the potential of targeting acetylation to enhance the efficacy of existing antibiotics.


Subject(s)
Isoniazid , Mycobacterium smegmatis , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Isoniazid/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , Bacterial Proteins/metabolism
2.
Environ Mol Mutagen ; 62(9): 502-511, 2021 11.
Article in English | MEDLINE | ID: mdl-34655463

ABSTRACT

The present case-control study consisting of 1300 cases of head and neck squamous cell carcinoma (HNSCC) and the equal number of controls aimed to investigate the association of functionally important polymorphisms in cytochrome P4502A6 (CYP2A6*1B, CYP2A6*4C, CYP2A6*9-rs28399433) with HNSCC and the treatment response in cases receiving a combination of chemotherapy/radiotherapy (CT/RT). A significant decrease in risk to HNSCC was observed in the cases with deletion (CYP2A6*4B and CYP2A6*4C) or reduced activity genotypes (CYP2A6*9) of CYP2A6. This risk to HNSCC was further reduced significantly in tobacco users among the cases when compared to nontobacco users among the cases. The risk was also reduced to a slightly greater extent in alcohol users among the cases when compared to nonalcohol users among the cases. In contrast with decreased risk to HNSCC, almost half of the cases with variant genotypes of CYP2A6 (CYP2A6*1A/*4C+*1B/*4C+*4C/*4C and *9/*9) did not respond to the treatment. Likewise, the survival rate in cases receiving the treatment, after 55 months of follow-up was significantly lower in cases with deletion (6.3%) or reduced activity (11.9%) allele than in the cases with common alleles (41%). The present study has shown that CYP2A6 polymorphism significantly reduces the risk to HNSCC. Our data further suggested that CYP2A6 polymorphism may worsen the treatment outcome in the cases receiving CT/RT.


Subject(s)
Cytochrome P-450 CYP2A6/genetics , Head and Neck Neoplasms , Adult , Alcohol Drinking/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/radiotherapy , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoadjuvant Therapy , Polymorphism, Genetic , Risk Factors , Treatment Outcome
3.
J Proteomics ; 244: 104267, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34015520

ABSTRACT

Glycosylation affects clinical efficacy and safety; therefore, is a critical quality attribute of therapeutic monoclonal antibodies. Glycans are often labile and complex in patterns, giving rise to macro- and micro-heterogeneity. Recombinant production, diverse geographical locations, associated transportation and storage conditions further compound the problem. Two-way studies comparing glycoprofile of the originator and its given biosimilar are aplenty. However, the extent of analytical variation and similarity in glycoprofile across all approved versions of a drug is hardly explored. Using UHPLC and mass spectrometry, we compared the glycoprofiles of eight rituximab drug samples licensed for sale in India. While the types of glycans were found identical, the abundance of some glycans varied significantly within the tested population. The quality range of glycosylation parameters of the tested sample population differed significantly from the previously established values for US/EU licensed rituximab. As the mean abundance of the 90% of identified glycans falls within ±3SD, the extent of mutual variations amongst tested lots is less significant compared to the extreme deviation from previously established QR limits. Thus, we propose this approach as an orthogonal method to capture glycan variations in licensed versions of mAbs for quality surveillance and in cases where originator samples' are limiting. SIGNIFICANCE: As fluctuation in glycosylation may be of clinical significance, we identify that a one-to-one comparison with originator alone is insufficient in sensing the extent of variations in glycosylation parameters in licensed biosimilars of a given therapeutic mAb. Here we propose that future biosimilarity analysis may include an orthogonal approach of generating an additional combined QR range representing variations across the originator and its biosimilars. The glycosylation profiles of eight rituximab drug samples of different make obtained from the point of sale in India were found identical amongst the tested rituximab versions. However, the QR limits corresponding to important glycosylation parameters differed significantly across all tested samples from the previously established QR limits of US- and EU-licensed rituximab in statistical terms. Such an approach may be useful in defining the true range of glycan variations in licensed versions of therapeutic mAbs.


Subject(s)
Biosimilar Pharmaceuticals , Antibodies, Monoclonal , Glycosylation , India , Polysaccharides , Rituximab
4.
Comp Immunol Microbiol Infect Dis ; 36(4): 415-24, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23570844

ABSTRACT

The haemagglutinin (HA) encoding gene and genes encoding for immunomodulatory proteins i.e., schlafen-like protein, epidermal growth factor and golgi anti apoptotic protein of camelpoxvirus (CMLV) obtained from Indian dromedarian camels were cloned and characterized. In this study, the size of the HA encoding gene obtained from the Indian CMLV is 941 bp which is only partial. Sequence analysis of schlafen-like protein gene revealed that CMLV obtained from India shared 99.6% identity with CMLV-Iran and CMLV-Kazakhstan strains both at nucleotide and amino acid level. The size of epidermal growth factor (EGF) gene of Indian CMLV obtained in this study was 418 bp, which was due to the addition of one cytosine residue position 132 of EGF gene of Indian CMLV. Sequence analysis revealed that the Golgi anti-apoptotic protein (GAAP) of Indian CMLV shared 99.5% sequence identity both at the nucleotide and amino acid level with CMLV-Kazakhstan. Based on the nucleotide and amino acid sequence identities and phylogenetic analyses of these genes, it is found that CMLV-India is forming a cluster with Kazakhstan and Iranian CMLV isolates.


Subject(s)
Camelus/virology , Hemagglutinins/immunology , Immunologic Factors/immunology , Orthopoxvirus/immunology , Poxviridae Infections/veterinary , Amino Acid Sequence , Animals , Base Sequence , Camelus/genetics , Camelus/immunology , Cloning, Molecular , DNA, Viral/chemistry , DNA, Viral/genetics , Hemagglutinins/genetics , Immunologic Factors/genetics , India , Molecular Sequence Data , Orthopoxvirus/genetics , Phylogeny , Polymerase Chain Reaction/veterinary , Poxviridae Infections/immunology , Poxviridae Infections/virology , Sequence Alignment , Sequence Analysis, DNA
5.
Environ Monit Assess ; 168(1-4): 173-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19629732

ABSTRACT

Inhalation of emissions from petrol and diesel exhaust particulates is associated with potentially severe biological effects. In the present study, polycyclic aromatic hydrocarbons (PAHs) were identified from smokes released by the automobile exhaust from petrol and diesel. Intensive sampling of unleaded petrol and diesel exhaust were done by using 800-cm(3) motor car and 3,455-cm(3) vehicle, respectively. The particulate phase of exhaust was collected on Whatman filter paper. Particulate matters were extracted from filter paper by using Soxhlet. PAHs were identified from particulate matter by reverse phase high performance liquid chromatography using C(18) column. A total of 14 PAHs were identified in petrol and 13 in case of diesel sample after comparing to standard samples for PAH estimation. These inhalable PAHs released from diesel and petrol exhaust are known to possess mutagenic and carcinogenic activity, which may present a potential risk for the health of inhabitants.


Subject(s)
Gasoline/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis , Particulate Matter/analysis , Particulate Matter/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...