Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 22(1): 167, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237307

ABSTRACT

BACKGROUND: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur. METHODS: Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA). Both major and minor variants were explored in the three conserved-encoding domains of the pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS: All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The non-synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION: The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/parasitology , Senegal , Drug Resistance/genetics , Artemisinins/pharmacology , Artemisinins/therapeutic use , Plasmodium falciparum , Uganda , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use , High-Throughput Nucleotide Sequencing , Mutation
2.
Res Sq ; 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36798264

ABSTRACT

INTRODUCTION: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapies (ACTs), the current frontline malaria curative treatments. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in Sub-Saharan Africa where most malaria deaths occur. METHODS: Here, we evaluated ex vivo susceptibility to dihydroartemisinin (DHA) from 38 P. falciparum isolates collected in 2017 in Thiès (Senegal) expressed with the Ring-stage Survival Assay (RSA). We explored major and minor variants in the full Pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS: All samples tested in the ex vivo RSA were found to be susceptible to DHA. Both non-synonymous mutations K189T and K248R were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION: Altogether, investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.

3.
Sci Rep ; 10(1): 8907, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483161

ABSTRACT

In 2006, Senegal adopted artemisinin-based combination therapy (ACT) as first-line treatment in the management of uncomplicated malaria. This study aimed to update the status of antimalarial efficacy more than ten years after their first introduction. This was a randomized, three-arm, open-label study to evaluate the efficacy and safety of artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ) and dihydroartemisinin-piperaquine (DP) in Senegal. Malaria suspected patients were screened, enrolled, treated, and followed for 28 days for AL and ASAQ arms or 42 days for DP arm. Clinical and parasitological responses were assessed following antimalarial treatment. Genotyping (msp1, msp2 and 24 SNP-based barcode) were done to differentiate recrudescence from re-infection; in case of PCR-confirmed treatment failure, Pfk13 propeller and Pfcoronin genes were sequenced. Data was entered and analyzed using the WHO Excel-based application. A total of 496 patients were enrolled. In Diourbel, PCR non-corrected/corrected adequate clinical and parasitological responses (ACPR) was 100.0% in both the AL and ASAQ arms. In Kedougou, PCR corrected ACPR values were 98.8%, 100% and 97.6% in AL, ASAQ and DP arms respectively. No Pfk13 or Pfcoronin mutations associated with artemisinin resistance were found. This study showed that AL, ASAQ and DP remain efficacious and well-tolerated in the treatment of uncomplicated P. falciparum malaria in Senegal.


Subject(s)
Antimalarials/administration & dosage , Malaria, Falciparum/drug therapy , Microfilament Proteins/genetics , Plasmodium falciparum/classification , Protozoan Proteins/genetics , Adolescent , Amodiaquine/administration & dosage , Amodiaquine/adverse effects , Amodiaquine/pharmacology , Antimalarials/adverse effects , Antimalarials/pharmacology , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/adverse effects , Artemether, Lumefantrine Drug Combination/pharmacology , Artemisinins/administration & dosage , Artemisinins/adverse effects , Artemisinins/pharmacology , Child , Child, Preschool , Drug Combinations , Female , Humans , Infant , Infant, Newborn , Malaria, Falciparum/parasitology , Male , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Quinolines/administration & dosage , Quinolines/adverse effects , Quinolines/pharmacology , Senegal , Sequence Analysis, DNA , Treatment Failure
4.
Malar J ; 19(1): 134, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228566

ABSTRACT

BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) with artemether-lumefantrine as the first-line treatment for uncomplicated Plasmodium falciparum malaria. To date, multiple mutations associated with artemisinin delayed parasite clearance have been described in Southeast Asia in the Pfk13 gene, such as Y493H, R539T, I543T and C580Y. Even though ACT remains clinically and parasitologically efficacious in Senegal, the spread of resistance is possible as shown by the earlier emergence of resistance to chloroquine in Southeast Asia that subsequently spread to Africa. Therefore, surveillance of artemisinin resistance in malaria endemic regions is crucial and requires the implementation of sensitive tools, such as next-generation sequencing (NGS) which can detect novel mutations at low frequency. METHODS: Here, an amplicon sequencing approach was used to identify mutations in the Pfk13 gene in eighty-one P. falciparum isolates collected from three different regions of Senegal. RESULTS: In total, 10 SNPs around the propeller domain were identified; one synonymous SNP and nine non-synonymous SNPs, and two insertions. Three of these SNPs (T478T, A578S and V637I) were located in the propeller domain. A578S, is the most frequent mutation observed in Africa, but has not previously been reported in Senegal. A previous study has suggested that A578S could disrupt the function of the Pfk13 propeller region. CONCLUSION: As the genetic basis of possible artemisinin resistance may be distinct in Africa and Southeast Asia, further studies are necessary to assess the new SNPs reported in this study.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , High-Throughput Nucleotide Sequencing , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide , Senegal
SELECTION OF CITATIONS
SEARCH DETAIL
...