Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 674: 118-127, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38917712

ABSTRACT

The photocatalytic conversion of CO2 gas into energy-dense hydrocarbons holds the potential to address both environmental and energy problems. Catalysts consisting of CuO clusters/nanoparticles and ZnO nanorods on a metallic nanotube array (MeNTA) silicon substrate were utilized for CO2 reduction. The surface of the catalysts was modified with 3-amino-propyltriethoxysilane (APTES), the amine terminal of which can selectively bind CO2 gas. When photocatalytic CO2 reduction was performed with varying APTES and CuO contents, the highest methanol production of 4.5 mmol/g(catalyst) was obtained at 10 wt% APTES and 7.5 mM CuO contents. The high yield in the present work in comparison with previous reports is due to some advantages of the present catalytic system such as its enhanced activity, significant selectivity, and easy production: Nanometer-sized CuO produced by femtosecond pulse laser irradiation provides a larger active surface per volume and a free surface without a protector, which is favorable for advancing the catalytic activity. The formation of a heterojunction interface in a nanocomposite of p-type CuO and n-type ZnO increases holes at the valence band level of CuO, resulting in advantageous photovoltaic efficiency. The introduction of APTES on the catalyst surface enhances CO2 adsorption and brings about CO2 gas near the catalyst to accelerate the reaction rate. Finally, a three-dimensional tube array on the substrate enlarges the surface per volume for catalyst-loading compared to the two-dimensional substrate. Thus, the proposed catalytic system consisting of amine-loaded CuO/ZnO constructed on a three-dimensional nanotube array substrate is preferable for the photocatalytic conversion of CO2 gas to methanol.

SELECTION OF CITATIONS
SEARCH DETAIL
...