Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36234269

ABSTRACT

Ferrous titanate (FeTiO3) has a high theoretical capacity and physical and chemical properties stability, so it is a potential lithium anode material. In this study, FeTiO3 nanopowder and nanosheets were prepared by the sol-gel method and the hydrothermal method. In addition, niobium-ion doping was carried out, the radius of Nb close to Ti so the Nb can easily enter into the FeTiO3 lattice. Nb can provide more free electrons to improve the electrochemical performance. Then, the effects of the morphology and niobium doping on the microstructure and electrochemical properties of FeTiO3 were systematically studied. The results show that FeTiO3 nanosheets have a better lithium storage performance than nanopowders because of its high specific surface area. A certain amount of niobium doping can improve the electrochemical performance of FeTiO3. Finally, a 1 mol% niobium-doping FeTiO3 nanosheets (1Nb-FTO-S) electrode provided a higher specific capacity of 782.1 mAh g-1 at 50 mA g-1. After 200 cycles, the specific capacity of the 1Nb-FTO-S electrode remained at 509.6 mAh g-1. It is revealed that an increased specific surface area and ion doping are effective means to change the performance of lithium, and the proposed method looks promising for the design of other inorganic oxide electrode materials.

2.
ACS Appl Mater Interfaces ; 12(2): 2687-2694, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31860262

ABSTRACT

Silicon germanium (SiGe) alloys hold promise for thermoelectric power generation at high temperatures and have been applied in deep-space missions. However, enhancement of the dimensionless thermoelectric figure-of-merit (ZT) is still needed for practical civil applications of SiGe. In this work, we report high-performance oxide/SiGe bulk composites that were obtained via hot-press sintering of mixed powders composed of phosphorus (P)-doped SiGe prepared via mechanical alloying, using a ball-milling technique and La-Nb-doped SrTiO3 (La-Nb-STO). The La-Nb-STO powder was obtained from ball milling of a bulk La-Nb-STO sample that was sintered via hot pressing of hydrothermally synthesized La-Nb-STO powder. Controlling the amount of La-Nb-STO nanoparticles added to SiGe matrix increased the power factor by optimizing the electron concentration and mobility in the composite. In addition, compared with single-phase P-doped SiGe, the second phase decreased the thermal conductivity because of additional phonon scattering at the interface. As a result, a high ZT of 0.91 was realized in the n-type oxide/SiGe bulk composite at 1000 K, which was 18% larger than that for the typical materials used in space flight missions and 5% higher than the single-phase SiGe alloys obtained in the present study. The strategy used in this study could also be viable to further enhance the ZT of nanostructured n-type SiGe and SrTiO3-based oxide materials.

3.
Materials (Basel) ; 12(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861076

ABSTRACT

This paper addresses the effects of Ce-rich mischmetal on the microstructure evolution of a 5182 aluminum alloy during annealing and rolling processes. The Ce-rich mischmetal was added to an as-cast 5182 aluminum alloy in an induction furnace, and this was followed by homogenized annealing at 450 °C for 24 h and a rolling operation. The microstructure evolution and mechanical properties' analysis of the 5182 Al alloy were characterized. The results show that the Ce-rich mischmetal could modify the microstructure, refine the α-Al grains, break the network distribution of Mg2Si phases, and prevent Cr and Si atoms from diffusing into the Al6(Mn, Fe) phase in the as-cast 5182 Al alloys. Ce-rich mischmetal elements were also found to refine the Al6(Mn, Fe) phase after cold rolling. Then, the refined Al6(Mn, Fe) particles inhibited the growth of recrystallization grains to refine them from 10.01 to 7.18 µm after cold rolling. Consequently, the tensile strength of the cold-rolled 5182 Al alloy increased from 414.65 to 454.34 MPa through cell-size strengthening, dislocation density strengthening, and particle strengthening. The tensile strength of the recrystallization annealed 5182 Al alloy was increased from 322.16 to 342.73 MPa through grain refinement strengthening, and this alloy was more stable after the recrystallization annealing temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...