Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 240: 107692, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37459773

ABSTRACT

BACKGROUND AND OBJECTIVE: Lung cancer is an important cause of death and morbidity around the world. Two of the primary computed tomography (CT) imaging markers that can be used to differentiate malignant and benign lung nodules are the inhomogeneity of the nodules' texture and nodular morphology. The objective of this paper is to present a new model that can capture the inhomogeneity of the detected lung nodules as well as their morphology. METHODS: We modified the local ternary pattern to use three different levels (instead of two) and a new pattern identification algorithm to capture the nodule's inhomogeneity and morphology in a more accurate and flexible way. This modification aims to address the wide Hounsfield unit value range of the detected nodules which decreases the ability of the traditional local binary/ternary pattern to accurately classify nodules' inhomogeneity. The cut-off values defining these three levels of the novel technique are estimated empirically from the training data. Subsequently, the extracted imaging markers are fed to a hyper-tuned stacked generalization-based classification architecture to classify the nodules as malignant or benign. The proposed system was evaluated on in vivo datasets of 679 CT scans (364 malignant nodules and 315 benign nodules) from the benchmark Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and an external dataset of 100 CT scans (50 malignant and 50 benign). The performance of the classifier was quantitatively assessed using a Leave-one-out cross-validation approach and externally validated using the unseen external dataset based on sensitivity, specificity, and accuracy. RESULTS: The overall accuracy of the system is 96.17% with 97.14% sensitivity and 95.33% specificity. The area under the receiver-operating characteristic curve was 0.98, which highlights the robustness of the system. Using the unseen external dataset for validating the system led to consistent results showing the generalization abilities of the proposed approach. Moreover, applying the original local binary/ternary pattern or using other classification structures achieved inferior performance when compared against the proposed approach. CONCLUSIONS: These experimental results demonstrate the feasibility of the proposed model as a novel tool to assist physicians and radiologists for lung nodules' early assessment based on the new comprehensive imaging markers.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnosis , Lung/pathology , Tomography, X-Ray Computed/methods , Algorithms , ROC Curve , Solitary Pulmonary Nodule/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted
2.
Bioengineering (Basel) ; 9(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36290461

ABSTRACT

Lung cancer is among the most common mortality causes worldwide. This scientific article is a comprehensive review of current knowledge regarding screening, subtyping, imaging, staging, and management of treatment response for lung cancer. The traditional imaging modality for screening and initial lung cancer diagnosis is computed tomography (CT). Recently, a dual-energy CT was proven to enhance the categorization of variable pulmonary lesions. The National Comprehensive Cancer Network (NCCN) recommends usage of fluorodeoxyglucose positron emission tomography (FDG PET) in concert with CT to properly stage lung cancer and to prevent fruitless thoracotomies. Diffusion MR is an alternative to FDG PET/CT that is radiation-free and has a comparable diagnostic performance. For response evaluation after treatment, FDG PET/CT is a potent modality which predicts survival better than CT. Updated knowledge of lung cancer genomic abnormalities and treatment regimens helps to improve the radiologists' skills. Incorporating the radiologic experience is crucial for precise diagnosis, therapy planning, and surveillance of lung cancer.

3.
Cancers (Basel) ; 14(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35406614

ABSTRACT

Pulmonary nodules are the precursors of bronchogenic carcinoma, its early detection facilitates early treatment which save a lot of lives. Unfortunately, pulmonary nodule detection and classification are liable to subjective variations with high rate of missing small cancerous lesions which opens the way for implementation of artificial intelligence (AI) and computer aided diagnosis (CAD) systems. The field of deep learning and neural networks is expanding every day with new models designed to overcome diagnostic problems and provide more applicable and simply used models. We aim in this review to briefly discuss the current applications of AI in lung segmentation, pulmonary nodule detection and classification.

4.
Sensors (Basel) ; 20(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171714

ABSTRACT

Recent advancements in cloud computing, artificial intelligence, and the internet of things (IoT) create new opportunities for autonomous industrial environments monitoring. Nevertheless, detecting anomalies in harsh industrial settings remains challenging. This paper proposes an edge-fog-cloud architecture with mobile IoT edge nodes carried on autonomous robots for thermal anomalies detection in aluminum factories. We use companion drones as fog nodes to deliver first response services and a cloud back-end for thermal anomalies analysis. We also propose a self-driving deep learning architecture and a thermal anomalies detection and visualization algorithm. Our results show our robot surveyors are low-cost, deliver reduced response time, and more accurately detect anomalies compared to human surveyors or fixed IoT nodes monitoring the same industrial area. Our self-driving architecture has a root mean square error of 0.19 comparable to VGG-19 with a significantly reduced complexity and three times the frame rate at 60 frames per second. Our thermal to visual registration algorithm maximizes mutual information in the image-gradient domain while adapting to different resolutions and camera frame rates.

SELECTION OF CITATIONS
SEARCH DETAIL
...