Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Prep Biochem Biotechnol ; 46(1): 30-8, 2016.
Article in English | MEDLINE | ID: mdl-25748124

ABSTRACT

Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications.


Subject(s)
Agriculture , Surface-Active Agents/metabolism , Fermentation , Pseudomonas aeruginosa/metabolism , Surface Properties
2.
Bioresour Technol ; 102(2): 1567-73, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20863693

ABSTRACT

Adaptation of Penicillium simplicissimum with different heavy metals present in a spent hydrocracking catalyst, as well as one-step, two-step, and spent medium bioleaching of the spent catalyst by the adapted fungus, was examined in batch cultures. Adaptation experiments with the single metal ions Ni, Mo, Fe, and W showed that the fungus could tolerate up to 1500 mg/L Ni, 8000 mg/L Mo, 3000 mg/L Fe, and 8000 mg/L W. In the presence of multi-metals, the fungus was able to tolerate up to 300 mg/L Ni, 200 mg/L Mo, 150 mg/L Fe and 2500 mg/L W. A total of 3% (w/v) spent catalyst generally gave the maximum extraction yields in the two-step bioleaching process (100% of W, 100% of Fe, 92.7% of Mo, 66.43% of Ni, and 25% of Al). The main lixiviant in the bioleaching was shown to be gluconic acid. The red pigment produced by the fungus could also possibly act as an agent in Al leaching.


Subject(s)
Environmental Pollutants/isolation & purification , Industrial Waste/analysis , Penicillium/metabolism , Tungsten/isolation & purification , Biodegradation, Environmental/drug effects , Biomass , Catalysis/drug effects , Hydrogen-Ion Concentration/drug effects , Penicillium/drug effects , Penicillium/growth & development , Recycling , Tungsten/toxicity
3.
Bioresour Technol ; 99(8): 2840-5, 2008 May.
Article in English | MEDLINE | ID: mdl-17698352

ABSTRACT

In this study the effects of initial concentration of Fe(II) and Fe(III) ions as well as initial pH on the bioleaching of a low-grade sphalerite ore in a leaching column over a period of 120 days with and without bacteria were investigated. Four different modifications of medium were used as column feed solutions to investigate the effects of initial concentration of Fe(II) and Fe(III) ions on zinc extraction. The experiments were carried out using a bench-scale, column leaching reactor, which was inoculated with mesophilic iron oxidizing bacteria, Acidithiobacillus ferrooxidans, initially isolated from the Sarcheshmeh chalcopyrite concentrate (Kerman, Iran). The effluent solutions were periodically analyzed for Zn, total Fe, Fe(II) and Fe(III) concentrations as well as pH values. Bacterial population was measured in the solution (free cells). Maximum zinc recovery in the column was achieved about 76% using medium free of initial ferrous ion and 11.4 g/L of ferric ion (medium 2) at pH 1.5. The extent of leaching of sphalerite ore with bacteria was significantly higher than that without bacteria (control) in the presence of ferrous ions. Fe(III) had a strong influence in zinc extraction, and did not adversely affect the growth of the bacteria population.


Subject(s)
Acidithiobacillus/metabolism , Bioreactors , Iron/metabolism , Iron/pharmacology , Sulfides/isolation & purification , Zinc Compounds/isolation & purification , Ferric Compounds/analysis , Ferric Compounds/pharmacology , Iron/analysis , Iron/isolation & purification , Oxidation-Reduction , Quartz/isolation & purification , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL