Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 51(12): 3548-58, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20817833

ABSTRACT

Seminolipid, also known as sulfogalactosylglycerolipid (SGG), plays important roles in male reproduction. Therefore, an accurate and sensitive method for SGG quantification in testes and sperm is needed. Here we compare SGG quantitation by the traditional colorimetric Azure A assay with LC-ESI-MS/MS using multiple reaction monitoring (MRM). Inclusion of deuterated SGG as the internal standard endowed accuracy to the MRM method. The results showed reasonable agreement between the two procedures for purified samples, but for crude lipid extracts, the colorimetric assay significantly overestimated the SGG content. Using ESI-MS/MS MRM, C16:0-alkyl/C16:0-acyl SGG of Cgt(+/⁻) mice was quantified to be 406.06 ± 23.63 µg/g testis and 0.13 ± 0.02 µg/million sperm, corresponding to 78% and 87% of the wild-type values, respectively. CGT (ceramide galactosyltransferase) is a critical enzyme in the SGG biosynthesis pathway. Cgt⁻/⁻ males depleted of SGG are infertile due to spermatogenesis arrest. However, Cgt(+/⁻) males sire offspring. The higher than 50% expression level of SGG in Cgt(+/⁻) animals, compared with the wild-type expression, might be partly due to compensatory translation of the active CGT enzyme. The results also indicated that 78% of SGG levels in Cgt(+/⁻) mice were sufficient for normal spermatogenesis.


Subject(s)
Chromatography, Liquid/methods , Glycolipids/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Animals , Colorimetry/methods , Female , Glycolipids/metabolism , Male , Mice , Mice, Inbred C57BL , N-Acylsphingosine Galactosyltransferase/metabolism , Sensitivity and Specificity , Spermatozoa/metabolism , Testis/metabolism
2.
Endocrinology ; 149(8): 3942-51, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18420734

ABSTRACT

Arylsulfatase A (AS-A) is a lysosomal enzyme, which catalyzes the desulfation of certain sulfogalactolipids, including sulfogalactosylglycerolipid (SGG), a molecule implicated in cell adhesion. In this report, immunocytochemistry revealed the selective presence of AS-A in the corpus luteum of mouse ovaries. Immunoblotting indicated that mouse corpus luteum AS-A had a molecular mass of 66 kDa, similar to AS-A of other tissues. Corpus luteum AS-A was active, capable of desulfating the artificial substrate, p-nitrocatechol sulfate, at the optimum pH of five. To understand further the role of AS-A in female reproduction, levels of AS-A were determined during corpus luteum development in pseudopregnant mice and during luteolysis after cessation of pseudopregnancy. Immunocytochemistry, immunoblotting and desulfation activity showed that AS-A expression was evident at the onset of pseudopregnancy in the newly formed corpora lutea, and its level increased steadily during gland development. The increase in the expression and activity of AS-A continued throughout luteolysis after the decrease in serum progesterone levels. We also observed the selective presence of SGG on the luteal cell surface in developed corpora lutea, as shown by immunofluorescence of mouse ovary sections as well as high-performance thin-layer chromatography of lipids isolated from mouse and pig corpora lutea. The identity of the "SGG" band on the thin layer silica plate was further validated by electrospray ionization mass spectrometry. Significantly, SGG disappeared in regressing corpora lutea. Therefore, lysosomal AS-A may be involved in cell-surface remodeling during luteolysis by desulfating SGG after its endocytosis and targeting to the lysosome.


Subject(s)
Cerebroside-Sulfatase/metabolism , Corpus Luteum/metabolism , Galactolipids/metabolism , Ovary/metabolism , Animals , Antigens, Surface/metabolism , Corpus Luteum/enzymology , Corpus Luteum/growth & development , Female , Luteolysis/metabolism , Lysosomes/metabolism , Male , Mice , Mice, Inbred ICR , Ovary/enzymology , Pseudopregnancy/enzymology , Pseudopregnancy/metabolism , Sulfates/metabolism , Swine , Tissue Distribution
3.
J Lipid Res ; 46(10): 2254-64, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16061947

ABSTRACT

A mass spectrometric method is described for monitoring cerebrosides in the presence of excess concentrations of alkali metal salts. This method has been adapted for use in the assay of arylsulfatase A (ASA) and the cerebroside sulfate activator protein (CSAct or saposin B). Detection of the neutral glycosphingolipid cerebroside product was achieved via enhancement of ionization efficiency in the presence of lithium ions. Assay samples were extracted into the chloroform phase as for the existing assays, dried, and diluted in methanol-chloroform-containing lithium chloride. Samples were analyzed by electrospray ionization mass spectrometry with a triple quadrupole mass spectrometer in the multiple reaction monitoring tandem mass spectrometric mode. The assay has been used to demonstrate several previously unknown or ambiguous aspects of the coupled ASA/CSAct reaction, including an absolute in vitro preference for CSAct over the other saposins (A, C, and D) and a preference for the non-hydroxylated species of the sulfatide substrate over the corresponding hydroxylated species. The modified assay for the coupled ASA/CSAct reaction could find applicability in settings in which the assay could not be performed previously because of the need for radiolabeled substrate, which is now not required.


Subject(s)
Cerebroside-Sulfatase/analysis , Saposins/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Cattle , Lithium/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...