Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nature ; 623(7987): 608-615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938768

ABSTRACT

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Subject(s)
CD4-Positive T-Lymphocytes , Herpesvirus 6, Human , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Virus Activation , Virus Latency , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Clinical Trials as Topic , Gene Expression Regulation, Viral , Genomics , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Herpesvirus 6, Human/physiology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Infectious Encephalitis/complications , Infectious Encephalitis/virology , Receptors, Chimeric Antigen/immunology , Roseolovirus Infections/complications , Roseolovirus Infections/virology , Single-Cell Gene Expression Analysis , Viral Load
2.
J Clin Invest ; 133(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36856115

ABSTRACT

Cancer-associated fibroblasts (CAFs) were presumed absent in glioblastoma given the lack of brain fibroblasts. Serial trypsinization of glioblastoma specimens yielded cells with CAF morphology and single-cell transcriptomic profiles based on their lack of copy number variations (CNVs) and elevated individual cell CAF probability scores derived from the expression of 9 CAF markers and absence of 5 markers from non-CAF stromal cells sharing features with CAFs. Cells without CNVs and with high CAF probability scores were identified in single-cell RNA-Seq of 12 patient glioblastomas. Pseudotime reconstruction revealed that immature CAFs evolved into subtypes, with mature CAFs expressing actin alpha 2, smooth muscle (ACTA2). Spatial transcriptomics from 16 patient glioblastomas confirmed CAF proximity to mesenchymal glioblastoma stem cells (GSCs), endothelial cells, and M2 macrophages. CAFs were chemotactically attracted to GSCs, and CAFs enriched GSCs. We created a resource of inferred crosstalk by mapping expression of receptors to their cognate ligands, identifying PDGF and TGF-ß as mediators of GSC effects on CAFs and osteopontin and HGF as mediators of CAF-induced GSC enrichment. CAFs induced M2 macrophage polarization by producing the extra domain A (EDA) fibronectin variant that binds macrophage TLR4. Supplementing GSC-derived xenografts with CAFs enhanced in vivo tumor growth. These findings are among the first to identify glioblastoma CAFs and their GSC interactions, making them an intriguing target.


Subject(s)
Cancer-Associated Fibroblasts , Glioblastoma , Humans , Glioblastoma/genetics , Transcriptome , DNA Copy Number Variations , Endothelial Cells , Sequence Analysis, RNA
3.
bioRxiv ; 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36993266

ABSTRACT

Tumor-associated neutrophil (TAN) effects on glioblastoma biology remain under-characterized. We show here that 'hybrid' neutrophils with dendritic features - including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate MHCII-dependent T cell activation - accumulate intratumorally and suppress tumor growth in vivo . Trajectory analysis of patient TAN scRNA-seq identifies this phenotype as a polarization state which is distinct from canonical cytotoxic TANs and differentiates intratumorally from immature precursors absent in circulation. Rather, these hybrid-inducible immature neutrophils - which we identified in patient and murine glioblastomas - arise from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a potent contributor of antitumoral myeloid APCs, including hybrid TANs and dendritic cells, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow - such as intracalvarial AMD3100 whose survival prolonging-effect in GBM we demonstrate - present therapeutic potential.

4.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-34003803

ABSTRACT

Metastases cause 90% of human cancer deaths. The metastatic cascade involves local invasion, intravasation, extravasation, metastatic site colonization, and proliferation. Although individual mediators of these processes have been investigated, interactions between these mediators remain less well defined. We previously identified a complex between receptor tyrosine kinase c-Met and ß1 integrin in metastases. Using cell culture and in vivo assays, we found that c-Met/ß1 complex induction promoted intravasation and vessel wall adhesion in triple-negative breast cancer cells, but did not increase extravasation. These effects may have been driven by the ability of the c-Met/ß1 complex to increase mesenchymal and stem cell characteristics. Multiplex transcriptomic analysis revealed upregulated Wnt and hedgehog pathways after c-Met/ß1 complex induction. A ß1 integrin point mutation that prevented binding to c-Met reduced intravasation. OS2966, a therapeutic antibody disrupting c-Met/ß1 binding, decreased breast cancer cell invasion and mesenchymal gene expression. Bone-seeking breast cancer cells exhibited higher levels of c-Met/ß1 complex than parental controls and preferentially adhered to tissue-specific matrix. Patient bone metastases demonstrated higher c-Met/ß1 complex than brain metastases. Thus, the c-Met/ß1 complex drove intravasation of triple-negative breast cancer cells and preferential affinity for bone-specific matrix. Pharmacological targeting of the complex may have prevented metastases, particularly osseous metastases.


Subject(s)
Breast Neoplasms , Integrin beta1 , Neoplasm Metastasis , Proto-Oncogene Proteins c-met , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Mice , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction
5.
Bone ; 137: 115395, 2020 08.
Article in English | MEDLINE | ID: mdl-32360898

ABSTRACT

Craniosynostosis (CS), the premature fusion of one or more cranial sutures, is a relatively common congenital anomaly, occurring in 3-5 per 10,000 live births. Nonsyndromic CS (NCS) accounts for up to 80% of all CS cases, yet the genetic factors contributing to the disorder remain largely unknown. The RUNX2 gene, encoding a transcription factor critical for bone and skull development, is a well known CS candidate gene, as copy number variations of this gene locus have been found in patients with syndromic craniosynostosis. In the present study, we aimed to characterize RUNX2 to better understand its role in the genetic etiology and in the molecular mechanisms underlying midline suture ossification in NCS. We report four nonsynonymous variants, one intronic variant and one 18 bp in-frame deletion in RUNX2 not found in our study control population. Significant difference in allele frequency (AF) for the deletion variant RUNX2 p.Ala84-Ala89del (ClinVar 257,095; dbSNP rs11498192) was observed in our sagittal NCS cohort when compared to the general population (P = 1.28 × 10-6), suggesting a possible role in the etiology of NCS. Dual-luciferase assays showed that three of four tested RUNX2 variants conferred a gain-of-function effect on RUNX2, further suggesting their putative pathogenicity in the tested NCS cases. Downregulation of RUNX2 expression was observed in prematurely ossified midline sutures. Metopic sites showed significant downregulation of promoter 1-specific isoforms compared to sagittal sites. Suture-derived mesenchymal stromal cells showed an increased expression of RUNX2 over matched unfused suture derived cells. This demonstrates that RUNX2, and particularly the distal promoter 1-isoform group, are overexpressed in the osteogenic precursors within the pathological suture sites.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Craniosynostoses , Core Binding Factor Alpha 1 Subunit/genetics , Cranial Sutures , Craniosynostoses/genetics , DNA Copy Number Variations , Gain of Function Mutation , Humans
6.
Cancer Res ; 80(7): 1498-1511, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32041837

ABSTRACT

Glioblastoma (GBM) responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance toward the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neoangiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient GBMs confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant versus bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of antiangiogenic therapy. SIGNIFICANCE: Bevacizumab resistance in GBM is associated with mesenchymal/glycolytic shifts involving YKL-40 and ZEB1. Targeting ZEB1 reduces bevacizumab-resistant GBM phenotypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1498/F1.large.jpg.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplastic Stem Cells/drug effects , Zinc Finger E-box-Binding Homeobox 1/metabolism , Adult , Aged , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Brain/blood supply , Brain/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Hypoxia/drug effects , Cell Line, Tumor , Chitinase-3-Like Protein 1/metabolism , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/blood supply , Glioblastoma/genetics , Glioblastoma/pathology , Human Umbilical Vein Endothelial Cells , Humans , Lignans/pharmacology , Lignans/therapeutic use , Male , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Tumor Microenvironment/drug effects , Up-Regulation , Xenograft Model Antitumor Assays , Young Adult , Zinc Finger E-box-Binding Homeobox 1/antagonists & inhibitors
7.
Semin Cancer Biol ; 66: 75-88, 2020 11.
Article in English | MEDLINE | ID: mdl-31472232

ABSTRACT

Autophagy is a lysosomal-dependent degradation process that is highly conserved and maintains cellular homeostasis by sequestering cytosolic material for degradation either non-specifically by non-selective autophagy, or targeting specific proteins aggregates by selective autophagy. Autophagy serves as a protective mechanism defending the cell from stressors and also plays an important role in enabling tumor cells to overcome harsh conditions arising in their microenvironment during growth as well as oxidative and non-oxidative injuries secondary to therapeutic stressors. Recently, autophagy has been implicated to cause tumor resistance to anti-angiogenic therapy, joining an existing literature implicating autophagy in cancer resistance to conventional DNA damaging chemotherapy and ionizing radiation. In this review, we discuss the role of angiogenesis in malignancy, mechanisms of resistance to anti-angiogenic therapy in general, the role of autophagy in driving malignancy, and the current literature in autophagy-mediated anti-angiogenic therapy resistance. Finally, we provide future insight into the current challenges of using autophagy inhibitors in the clinic and provides tips for future studies to focus on to effectively target autophagy in overcoming resistance to anti-angiogenic therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Autophagy/drug effects , Drug Resistance, Neoplasm/drug effects , Neovascularization, Pathologic/drug therapy , Animals , Autophagy/physiology , Drug Resistance, Neoplasm/physiology , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Tumor Microenvironment/drug effects
8.
Semin Oncol ; 46(3): 284-290, 2019 06.
Article in English | MEDLINE | ID: mdl-31488338

ABSTRACT

Initial studies on cancer primarily focused on malignant cells themselves. The overarching narrative of cancer revolved around unchecked and rapidly proliferating cells. Special attention was given to the molecular, genetic, and metabolic profiles of isolated cancer cells in hopes of elucidating a critical factor in malignancy. However, the scope of cancer research has broadened over the past few decades to include the local environment around cancer. It has become increasingly apparent that the immune cells, vascular networks, and the extracellular matrix all have a part in cancer progression. The impact of the extracellular matrix is particularly fascinating and key stromal changes have been identified in various cancers. Pioneering work studying laminin and hyaluronate has shown that these molecules have vital roles in cancer progression. More recently, fibronectin has been included as an extracellular driver of malignancy. Fibronectin is thought to play a considerable, albeit poorly understood, role in cancer pathogenesis. In this review, we present fundamental studies that have investigated the impact of fibronectin in cancer. As an abundant component of the extracellular matrix, understanding the effect of this molecule has the potential to elucidate cancer biology.


Subject(s)
Fibronectins/genetics , Medical Oncology/trends , Neoplasms/genetics , Disease Progression , Extracellular Matrix/genetics , Humans , Laminin/genetics , Neoplasms/metabolism , Neoplasms/pathology
9.
Cancer Discov ; 9(12): 1708-1719, 2019 12.
Article in English | MEDLINE | ID: mdl-31554641

ABSTRACT

Although tumor-propagating cells can be derived from glioblastomas (GBM) of the proneural and mesenchymal subtypes, a glioma stem-like cell (GSC) of the classic subtype has not been identified. It is unclear whether mesenchymal GSCs (mGSC) and/or proneural GSCs (pGSC) alone are sufficient to generate the heterogeneity observed in GBM. We performed single-cell/single-nucleus RNA sequencing of 28 gliomas, and single-cell ATAC sequencing for 8 cases. We found that GBM GSCs reside on a single axis of variation, ranging from proneural to mesenchymal. In silico lineage tracing using both transcriptomics and genetics supports mGSCs as the progenitors of pGSCs. Dual inhibition of pGSC-enriched and mGSC-enriched growth and survival pathways provides a more complete treatment than combinations targeting one GSC phenotype alone. This study sheds light on a long-standing debate regarding lineage relationships among GSCs and presents a paradigm by which personalized combination therapies can be derived from single-cell RNA signatures, to overcome intratumor heterogeneity. SIGNIFICANCE: Tumor-propagating cells can be derived from mesenchymal and proneural glioblastomas. However, a stem cell of the classic subtype has yet to be demonstrated. We show that classic-subtype gliomas are comprised of proneural and mesenchymal cells. This study sheds light on a long-standing debate regarding lineage relationships between glioma cell types.See related commentary by Fine, p. 1650.This article is highlighted in the In This Issue feature, p. 1631.


Subject(s)
Brain Neoplasms/genetics , Gene Regulatory Networks , Glioblastoma/genetics , Neoplastic Stem Cells/chemistry , Sequence Analysis, RNA/methods , Cell Line, Tumor , Cell Lineage , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans
11.
Crit Rev Oncol Hematol ; 142: 44-50, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31357143

ABSTRACT

Metastases from cells outside of the central nervous system are the most common cancer found in the brain and are commonly associated with poor prognosis. Although cancer treatment is improving overall, central nervous system metastases are becoming more prevalent and require finesse to properly treat. Physicians must consider the biology of the primary tumor and the complex neurological environment that the metastasis resides in. This can be further complicated by the fact that the practice of cancer management is constantly evolving and therapy that works outside of the blood-brain barrier may not be effective inside of it. Therefore, this review seeks to update the reader on recent advancements made on the three most common sources of brain metastases: lung cancer, breast cancer, and melanoma. Each of these malignancies has been the subject of intriguing and novel avenues of therapy which are reviewed here.


Subject(s)
Brain Neoplasms/therapy , Breast Neoplasms/therapy , Lung Neoplasms/therapy , Melanoma/therapy , Brain Neoplasms/pathology , Breast Neoplasms/secondary , Humans , Lung Neoplasms/secondary , Melanoma/secondary
12.
Oncotarget ; 10(22): 2212-2223, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31040912

ABSTRACT

Tumor-associated macrophages (TAMs) polarize to M1 and M2 subtypes exerting anti-tumoral and pro-tumoral effects, respectively. To date, little is known about TAMs, their subtypes, and their roles in non-functional pituitary adenomas (NFPAs). We performed flow cytometry on single cell suspensions from 16 NFPAs, revealing that CD11b+ myeloid cells comprise an average of 7.3% of cells in NFPAs (range = 0.5%-27.1%), with qPCR revealing most CD11b+ cells to be monocyte-derived TAMs rather than native microglia. The most CD11b-enriched NFPAs (10-27% CD11b+) were the most expansile (size>3.5 cm or MIB1>3%). Increasing CD11b+ fraction was associated with decreased M2 TAMs and increased M1 TAMs. All NFPAs with cavernous sinus invasion had M2/M1 gene expression ratios above one, while 80% of NFPAs without cavernous sinus invasion had M2/M1<1 (P = 0.02). Cultured M2 macrophages promoted greater invasion (P < 10-5) and proliferation (P = 0.03) of primary NFPA cultures than M1 macrophages in a manner inhibited by siRNA targeting S100A9 and EZH2, respectively. Primary NFPA cultures were of two types: some recruited more monocytes in an MCP-1-dependent manner and polarized these to M2 TAMs, while others recruited fewer monocytes and polarized them to M1 TAMS in a GM-CSF-dependent manner. These findings suggest that TAM recruitment and polarization into the pro-tumoral M2 subtype drives NFPA proliferation and invasion. Robust M2 TAM infiltrate may occur during an NFPA growth phase before self-regulating into a slower growth phase with fewer overall TAMs and M1 polarization. Analyses like these could generate immunomodulatory therapies for NFPAs.

13.
Neurosurg Rev ; 42(3): 639-647, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30006663

ABSTRACT

Functional brain mapping (FBM) is an integral part of contemporary neurosurgery. It is crucial for safe and optimal resection of brain lesions like gliomas. The eloquent regions of the cortex like motor, somatosensory, Wernicke's, and Broca are usually mapped, either preoperatively or intraoperatively. Since its birth in the nineteenth century, FBM has witnessed immense modernization, radical refinements, and the introduction of novel techniques, most of which are non-invasive. Direct electrical stimulation of the cortex, despite its high invasiveness, remains the technique of choice. Non-invasive techniques like fMRI and magnetoencephalography allow us the convenience of multiple mappings with minimal discomfort to the patients. They are quick, easy to do, and allow thorough study. Different modalities are now being combined to yield better delineations like fMRI and diffusion tensor imaging. This article reviews the physical principles, applications, merits, shortcomings, and latest developments of nine FBM techniques. Other than neurosurgical operations, these techniques have also been applied to studies of stroke, Alzheimer's, and cognition. There are strong indications that the future of brain mapping shall see the non-invasive techniques playing a more dominant role as they become more sensitive and accurate due to advances in physics, refined algorithms, and subsequent validation against invasive techniques.


Subject(s)
Brain Mapping , Functional Neuroimaging , Neurosurgical Procedures/methods , Brain Neoplasms/surgery , Glioma/surgery , Humans , Magnetic Resonance Imaging , Magnetoencephalography
14.
Genome Biol ; 18(1): 234, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29262845

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) are abundant in gliomas and immunosuppressive TAMs are a barrier to emerging immunotherapies. It is unknown to what extent macrophages derived from peripheral blood adopt the phenotype of brain-resident microglia in pre-treatment gliomas. The relative proportions of blood-derived macrophages and microglia have been poorly quantified in clinical samples due to a paucity of markers that distinguish these cell types in malignant tissue. RESULTS: We perform single-cell RNA-sequencing of human gliomas and identify phenotypic differences in TAMs of distinct lineages. We isolate TAMs from patient biopsies and compare them with macrophages from non-malignant human tissue, glioma atlases, and murine glioma models. We present a novel signature that distinguishes TAMs by ontogeny in human gliomas. Blood-derived TAMs upregulate immunosuppressive cytokines and show an altered metabolism compared to microglial TAMs. They are also enriched in perivascular and necrotic regions. The gene signature of blood-derived TAMs, but not microglial TAMs, correlates with significantly inferior survival in low-grade glioma. Surprisingly, TAMs frequently co-express canonical pro-inflammatory (M1) and alternatively activated (M2) genes in individual cells. CONCLUSIONS: We conclude that blood-derived TAMs significantly infiltrate pre-treatment gliomas, to a degree that varies by glioma subtype and tumor compartment. Blood-derived TAMs do not universally conform to the phenotype of microglia, but preferentially express immunosuppressive cytokines and show an altered metabolism. Our results argue against status quo therapeutic strategies that target TAMs indiscriminately and in favor of strategies that specifically target immunosuppressive blood-derived TAMs.


Subject(s)
Glioma/genetics , Glioma/pathology , Macrophage Activation/genetics , Macrophages/metabolism , Macrophages/pathology , Tumor Microenvironment/genetics , Animals , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Glioma/immunology , Glioma/therapy , High-Throughput Nucleotide Sequencing , Humans , Immunotherapy/methods , Macrophage Activation/immunology , Mice , Prognosis , Single-Cell Analysis , Survival Analysis , Transcriptome , Tumor Microenvironment/immunology
15.
Am J Med Genet A ; 173(11): 2893-2897, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28985029

ABSTRACT

Craniosynostosis presents either as a nonsyndromic congenital anomaly or as a finding in nearly 200 genetic syndromes. Our previous genome-wide association study of sagittal nonsyndromic craniosynostosis identified associations with variants downstream from BMP2 and intronic in BBS9. Because no coding variants in BMP2 were identified, we hypothesized that conserved non-coding regulatory elements may alter BMP2 expression. In order to identify and characterize noncoding regulatory elements near BMP2, two conserved noncoding regions near the associated region on chromosome 20 were tested for regulatory activity with a Renilla luciferase assay. For a 711 base pair noncoding fragment encompassing the most strongly associated variant, rs1884302, the luciferase assay showed that the risk allele (C) of rs1884302 drives higher expression of the reporter than the common allele (T). When this same DNA fragment was tested in zebrafish transgenesis studies, a strikingly different expression pattern of the green fluorescent reporter was observed depending on whether the transgenic fish had the risk (C) or the common (T) allele at rs1884302. The in vitro results suggest that altered BMP2 regulatory function at rs1884302 may contribute to the etiology of sagittal nonsyndromic craniosynostosis. The in vivo results indicate that differences in regulatory activity depend on the presence of a C or T allele at rs1884302.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Congenital Abnormalities/genetics , Craniosynostoses/genetics , Genetic Predisposition to Disease , Alleles , Animals , Animals, Genetically Modified/genetics , Congenital Abnormalities/physiopathology , Conserved Sequence , Gene Expression Regulation/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid/genetics , Zebrafish/genetics
16.
Proc Natl Acad Sci U S A ; 114(41): E8685-E8694, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973887

ABSTRACT

The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/ß1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/ß1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/ß1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and ß1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/ß1 complex to maintain the high-affinity ß1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/ß1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from ß1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5ß1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/ß1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes.


Subject(s)
Breast Neoplasms/secondary , Drug Resistance, Neoplasm , Glioblastoma/secondary , Integrin beta1/metabolism , Proto-Oncogene Proteins c-met/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Bevacizumab/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Adhesion/drug effects , Cell Movement/drug effects , Female , Fibronectins/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Integrin beta1/genetics , Mice , Neoplasm Invasiveness , Phosphorylation/drug effects , Proto-Oncogene Proteins c-met/genetics , Signal Transduction/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
JCI Insight ; 2(2): e88815, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28138554

ABSTRACT

Clinical trials revealed limited response duration of glioblastomas to VEGF-neutralizing antibody bevacizumab. Thriving in the devascularized microenvironment occurring after antiangiogenic therapy requires tumor cell adaptation to decreased glucose, with 50% less glucose identified in bevacizumab-treated xenografts. Compared with bevacizumab-responsive xenograft cells, resistant cells exhibited increased glucose uptake, glycolysis, 13C NMR pyruvate to lactate conversion, and survival in low glucose. Glucose transporter 3 (GLUT3) was upregulated in bevacizumab-resistant versus sensitive xenografts and patient specimens in a HIF-1α-dependent manner. Resistant versus sensitive cell mitochondria in oxidative phosphorylation-selective conditions produced less ATP. Despite unchanged mitochondrial numbers, normoxic resistant cells had lower mitochondrial membrane potential than sensitive cells, confirming poorer mitochondrial health, but avoided the mitochondrial dysfunction of hypoxic sensitive cells. Thin-layer chromatography revealed increased triglycerides in bevacizumab-resistant versus sensitive xenografts, a change driven by mitochondrial stress. A glycogen synthase kinase-3ß inhibitor suppressing GLUT3 transcription caused greater cell death in bevacizumab-resistant than -responsive cells. Overexpressing GLUT3 in tumor cells recapitulated bevacizumab-resistant cell features: survival and proliferation in low glucose, increased glycolysis, impaired oxidative phosphorylation, and rapid in vivo proliferation only slowed by bevacizumab to that of untreated bevacizumab-responsive tumors. Targeting GLUT3 or the increased glycolysis reliance in resistant tumors could unlock the potential of antiangiogenic treatments.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Glucose Transporter Type 3/genetics , Glycolysis , Angiogenesis Inhibitors/pharmacology , Animals , Bevacizumab/pharmacology , Cell Line, Tumor , Cell Survival , Drug Resistance, Neoplasm/drug effects , Glioblastoma/blood supply , Glioblastoma/genetics , Glioblastoma/metabolism , Glucose/metabolism , Glucose Transporter Type 3/drug effects , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, Nude , Neoplasm Transplantation , Oxidative Phosphorylation , Pyruvic Acid/metabolism , Up-Regulation
18.
Mol Cell Endocrinol ; 446: 81-90, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28214592

ABSTRACT

Non-functional pituitary adenomas (NFPAs) are among the commonest intracranial neoplasms. While histologically benign, NFPAs sometimes become large enough to limit therapeutic options and reduce quality of life. Investigations of the molecular etiology of NFPAs have failed to identify prevalent genetic changes and, while a role for p53 has been suggested, TP53 gene alterations have yet to be described in NFPAs. We found that the polymorphism rs1042522:C > G in codon 72 of exon 4 of the TP53 gene, whose C variant produces a proline and is more common in most ethnicities, has a G variant producing an arginine in 79.8% of NFPAs (n = 42; p < 1.411 × 10-18 vs. 1000 Genomes database), causing patients to present a decade earlier with symptomatic NFPAs. In cultured NFPA cells, transfection with the rs1042522 G variant versus the C variant reduced expression of cell arrest gene p21 and increased proliferation. These findings suggest that this TP53 polymorphism influences NFPA growth.


Subject(s)
Adenoma/genetics , Genetic Predisposition to Disease , Pituitary Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Tumor Suppressor Protein p53/genetics , Adenoma/blood supply , Adenoma/pathology , Case-Control Studies , Cell Proliferation/genetics , Humans , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Odds Ratio , Pituitary Neoplasms/blood supply , Pituitary Neoplasms/pathology , Transcription, Genetic
19.
Cleft Palate Craniofac J ; 51(1): 115-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23566293

ABSTRACT

OBJECTIVE: The MAPK/ERK signaling pathway has been implicated in several craniosynostosis syndromes and represents a plausible target for therapeutic management of craniosynostosis. The causes of sagittal nonsyndromic craniosynostosis (sNSC) have not been well understood and the role that MAPK/ERK signaling cascade plays in this condition warrants an investigation. We hypothesized that MAPK-signaling is misregulated in calvarial osteoblasts derived from patients with sNSC. METHODS: In order to analyze if the MAPK/ERK pathway is perturbed in sNSC, we established primary calvarial osteoblast cell lines from patients undergoing surgery for correction of this congenital anomaly. Appropriate negative and positive control cell lines were used for comparison, and we examined the levels of phosphorylated ERK by immunoblotting. RESULTS: Primary osteoblasts from patients with sNSC showed no difference in ERK1/2 phosphorylation with or without FGF2 stimulation as compared with control osteoblasts. CONCLUSION: Under the described test conditions, we did not observe convincing evidence that MAPK/ERK signaling contributes to the development of sNSC.


Subject(s)
Craniosynostoses/metabolism , MAP Kinase Kinase Kinase 1/metabolism , Osteoblasts/metabolism , Case-Control Studies , Cells, Cultured , Humans , Immunoblotting , Phosphorylation , Signal Transduction , Skull/cytology
20.
Birth Defects Res A Clin Mol Teratol ; 97(12): 759-63, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23913486

ABSTRACT

BACKGROUND: Bladder-exstrophy-epispadias complex (BEEC) is a severe congenital anomaly that represents a spectrum of urological abnormalities where parts or all of the distal urinary tract fail to close during development. Multiple lines of evidence strongly suggested p63 as a plausible candidate gene. We conducted a candidate gene association study to further investigate the role of p63 in human BEEC. METHODS: We conducted a family-based association study of p63 using 154 Caucasian patients with nonsyndromic BEEC and their unaffected parents. High throughput single nucleotide polymorphism (SNP) genotyping was carried out using Illumina's Golden Gate Assay for 109 selected tagging SNPs localized within p63 with a minor allele frequency > 0.01. Individual and haplotype SNP transmission disequilibrium tests were conducted using Plink and Haploview, respectively. We also examined parent-of-origin effects using paternal asymmetry tests implemented in FAMHAP (http://famhap.meb.uni-bonn.de/index.html). RESULTS: Nominally significant associations were identified between BEEC and six SNPs (rs17447782, rs1913720, rs6790167, rs9865857, rs1543969, rs4687100), and four haplotype blocks including or near these significant SNPs. Analysis of parent-of-origin effects showed significant results for seven SNPs (rs4118375, rs12696596, rs6779677, rs13091309, rs7642420, rs1913721, and rs1399774). None of these results remained significant after multiple testing correction. CONCLUSION: The altered transmission of p63 variants in nonsyndromic BEEC patients may be suggestive of its involvement in the disease etiology. Further and large multi-institutional collaborative studies are required to elucidate the role of p63 in nonsyndromic BEEC.


Subject(s)
Bladder Exstrophy/genetics , Epispadias/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Urinary Bladder/metabolism , Asymptomatic Diseases , Bladder Exstrophy/complications , Bladder Exstrophy/pathology , Epispadias/complications , Epispadias/pathology , Female , Gene Frequency , Genetic Association Studies , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Inheritance Patterns , Linkage Disequilibrium , Male , Urinary Bladder/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...