Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 281(1-3): 153-63, 2001 Dec 17.
Article in English | MEDLINE | ID: mdl-11778948

ABSTRACT

Excessive amounts of heavy metals (e.g. Zn, Cu, Mn, Cr) are accumulated in river bottom sediments (RBS), being available to humans and animals along food chains. Increased exposure of mammals to certain metals (Cr, Cu) induces immunosuppresion, due to DNA damage and decreased survival of lymphoid cells. By contrast, excess of Zn and Cd causes inhibition of apoptosis thus suggesting increased survival of genetically mutated cells and higher cancer risks in exposed populations. Rat thymic lymphocytes represent a well-established model for apoptosis testing. The primary goal of our study was to assess the degree of apoptosis modulation with a number of RBS extracts differing in their metal contents. A series of freshly deposited RBS was collected at nine sampling stations along the Elbe River. All sediments were rich in Fe, Mn and Zn. The contents of Cu, Cr, Ni, Cd, Hg, Pb and As were much lower and interrelated. The short-term cytotoxicity of aqueous sediment extracts was assessed, using the following criteria: total cell counts; incidence of apoptosis and necrosis (morphological detection by fluorescent microscopy); and nuclear chromatin decay (by DNA flow cytometry). RBS extracts produced both apoptosis and necrosis of thymocytes. High contents of zinc and other heavy metals in the samples correlated with decreased thymocyte apoptosis (r= -0.543 to -0.608, P <0.01). The rates of thymocyte damage showed a distinct dependence on the time and region of sampling. Apoptosis modulation was also tested with pure salts of Mn(II), Zn(II), Cu(II), Cr(III) and Cd(II), at the test concentrations of 1, 10 and 100 microM. Cu(II) and Cr(III) proved to induce marked dose-related apoptosis, whereas Zn(II) ions caused significant suppression of apoptosis. These effects were similar to those trends observed with metal-rich sediments. In the present study. DNA flow cytometry proved to be a less sensitive index of cell death than morphological assay of apoptosis and/or necrosis. In summary, inhibition of lymphocyte apoptosis by RBS extracts and pure metals is associated with excess of zinc and, probably, cadmium. The proposed model of lymphoid cell apoptosis is a promising tool for screening cytotoxic effects of complex environmental samples.


Subject(s)
Apoptosis/drug effects , Cadmium/adverse effects , DNA Damage , Thymus Gland/cytology , Zinc/adverse effects , Animals , Cell Culture Techniques , Chromatin , Disease Models, Animal , Dose-Response Relationship, Drug , Environmental Monitoring/methods , Flow Cytometry , Food Chain , Geologic Sediments/chemistry , Humans , Necrosis , Rats , Thymus Gland/pathology , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...