Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 27(2): 823-834, 2023 02.
Article in English | MEDLINE | ID: mdl-35041615

ABSTRACT

Internet of medical things (IoMT) has made it possible to collect applications and medical devices to improve healthcare information technology. Since the advent of the pandemic of coronavirus (COVID-19) in 2019, public health information has become more sensitive than ever. Moreover, different news items incorporated have resulted in differing public perceptions of COVID-19, especially on the social media platform and infrastructure. In addition, the unprecedented virality and changing nature of COVID-19 makes call centres to be likely overstressed, which is due to a lack of authentic and unregulated public media information. Furthermore, the lack of data privacy has restricted the sharing of COVID-19 information among health institutions. To resolve the above-mentioned limitations, this paper is proposing a privacy infrastructure based on federated learning and blockchain. The proposed infrastructure has the potentials to enhance the trust and authenticity of public media to disseminate COVID-19 information. Also, the proposed infrastructure can effectively provide a shared model while preserving the privacy of data owners. Furthermore, information security and privacy analyses show that the proposed infrastructure is robust against information security-related attacks.


Subject(s)
Blockchain , COVID-19 , Humans , Computer Security , Delivery of Health Care , Privacy
2.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236255

ABSTRACT

In this paper, we address the problems of fraud and anomalies in the Bitcoin network. These are common problems in e-banking and online transactions. However, as the financial sector evolves, so do the methods for fraud and anomalies. Moreover, blockchain technology is being introduced as the most secure method integrated into finance. However, along with these advanced technologies, many frauds are also increasing every year. Therefore, we propose a secure fraud detection model based on machine learning and blockchain. There are two machine learning algorithms-XGboost and random forest (RF)-used for transaction classification. The machine learning techniques train the dataset based on the fraudulent and integrated transaction patterns and predict the new incoming transactions. The blockchain technology is integrated with machine learning algorithms to detect fraudulent transactions in the Bitcoin network. In the proposed model, XGboost and random forest (RF) algorithms are used to classify transactions and predict transaction patterns. We also calculate the precision and AUC of the models to measure the accuracy. A security analysis of the proposed smart contract is also performed to show the robustness of our system. In addition, an attacker model is also proposed to protect the proposed system from attacks and vulnerabilities.


Subject(s)
Blockchain , Algorithms , Fraud , Machine Learning , Technology
3.
Sensors (Basel) ; 22(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36236363

ABSTRACT

In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN.


Subject(s)
Blockchain , Electricity , Machine Learning
4.
Sensors (Basel) ; 22(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080777

ABSTRACT

The exponential growth of intelligent vehicles(IVs) development has resulted in a complex network. As the number of IVs in a network increases, so does the number of connections. As a result, a great deal of data is generated. This complexity leads to insecure communication, traffic congestion, security, and privacy issues in vehicular networks (VNs). In addition, detecting malicious IVs, data integration, and data validation are major issues in VNs that affect network performance. A blockchain-based model for secure communication and malicious IV detection is proposed to address the above issues. In addition, this system also addresses data integration and transaction validation using an encryption scheme for secure communication. A multi-chain concept separates the legitimate and malicious data into two chains: the Integrity chain (I-chain) and Fraud chain (F-chain). This multi-chain mechanism solves the storage problem and reduces the computing power. The integration of blockchain in the proposed model provides privacy, network security, transparency, and immutability. To address the storage issue, the InterPlanetary File System (IPFS) is integrated with Certificate Authority (CA). A reputation mechanism is introduced to detect malicious IVs in the network based on ratings. This reputation mechanism is also used to prevent Sybil attack. The evaluation of the proposed work is based on the cost of smart contracts and computation time. Furthermore, two attacker models are presented to prevent the selfish mining attack and the Sybil attack. Finally, a security analysis of the proposed smart contracts with their security vulnerabilities is also presented.


Subject(s)
Blockchain , Computer Security , Communication , Computer Communication Networks , Privacy
SELECTION OF CITATIONS
SEARCH DETAIL
...