Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Mater ; 18(12): 1384, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31712746

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Chem Asian J ; 6(12): 3270-80, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-21956843

ABSTRACT

In addition to its high thermal stability, repetitive hydration/dehydration tests have revealed that the porous zirconium terephthalate UiO-66 switches reversibly between its dehydroxylated and hydroxylated versions. The structure of its dehydroxylated form has thus been elucidated by coupling molecular simulations and X-ray powder diffraction data. Infrared measurements have shown that relatively weak acid sites are available while microcalorimetry combined with Monte Carlo simulations emphasize moderate interactions between the UiO-66 surface and a wide range of guest molecules including CH(4), CO, and CO(2). These properties, in conjunction with its significant adsorption capacity, make UiO-66 of interest for its further evaluation for CO(2) recovery in industrial applications. This global approach suggests a strategy for the evaluation of metal-organic frameworks for gas-based applications.

3.
J Phys Chem B ; 112(35): 10777-81, 2008 Sep 04.
Article in English | MEDLINE | ID: mdl-18698717

ABSTRACT

Density functional theory was used to estimate the third-order hypersusceptibility chi (3) of the alpha-TeO2 paratellurite (as a model structure for TeO2 glass) and the same value for alpha-SiO2 cristobalite (as a model structure for glassy silica). The attempt was made to gain a physical insight into the nature of the extraordinarily high hypersusceptibility of TeO2 glass. A finite field perturbation method implemented in the CRYSTAL code with the "sawtooth" approach was employed. The chi (3) values calculated for alpha-TeO2 were found to be of the same order as that measured for TeO2 glass and much higher than the values computed for alpha-SiO2 which, in turn, were close to that of glassy silica.

4.
J Am Chem Soc ; 129(7): 1912-20, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-17260984

ABSTRACT

The layered ternary nitride LiNiN shows an interesting combination of fast Li+ ion diffusion and metallic behavior, properties which suggest potential applications as an electrode material in lithium ion batteries. A detailed investigation of the structure and properties of LiNiN using powder neutron diffraction, ab initio calculations, SQUID magnetometry, and solid-state NMR is described. Variable-temperature neutron diffraction demonstrates that LiNiN forms a variant of the parent Li3N structure in which Li+ ion vacancies are ordered within the [LiN] planes and with Ni exclusively occupying interlayer positions (at 280 K: hexagonal space group Pm2, a = 3.74304(5) A, c = 3.52542(6) A, Z = 1). Calculations suggest that LiNiN is a one-dimensional metal, as a result of the mixed pi- and sigma-bonding interactions between Ni and N along the c-axis. Solid-state 7Li NMR spectra are consistent with both fast Li+ motion and metallic behavior.


Subject(s)
Lithium/chemistry , Nickel/chemistry , Nitrogen/chemistry , Magnetic Resonance Spectroscopy/methods , Magnetics , Neutron Diffraction , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL