Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 6(9): e1341031, 2017.
Article in English | MEDLINE | ID: mdl-28932644

ABSTRACT

Facilitating the development of alternative targeted therapeutic strategies is urgently required to improve outcome or circumvent chemotherapy resistance in children, adolescents, and adults with recurrent/refractory de novo mature B-cell (CD20) non-Hodgkin lymphoma, including Burkitt lymphoma (BL). Romidepsin, a histone deacetylase inhibitor (HDACi), has been used to treat cutaneous T-cell lymphoma. We have demonstrated the significant anti-tumor effect of anti-CD20 chimeric antigen receptor (CAR) modified expanded peripheral blood natural killer (exPBNK) against rituximab-sensitive and -resistant BL. This study examined the anti-tumor activity of romidepsin alone and in combination with anti-CD20 CAR exPBNKs against rituximab-sensitive and -resistant BL in vitro and in vivo. We found that romidepsin significantly inhibited both rituximab-sensitive and -resistant BL cell proliferation in vitro (P < 0.001) and induced cell death in rituximab-sensitive Raji (P < 0.001) and cell cycle arrest in rituximab-resistant Raji-2R and Raji-4RH (P < 0.001). Consistent with in vitro observations, we also found romidepsin significantly inhibited the growth of rituximab-sensitive and -resistant BL in BL xenografted NSG mice. We also demonstrated that romidpesin significantly induced the expression of Natural Killer Group 2, Member D (NKG2D) ligands MICA/B in both rituximab-sensitive and -resistant BL cells (P < 0.001) resulting in enhancement of exPBNK in vitro cytotoxicity through NKG2D. Finally, we observed the combination of romidepsin and anti-CD20 CAR exPBNK significantly induced cell death in BL cells in vitro, reduced tumor burden and enhanced survival in humanized BL xenografted NSG mice (p < 0.05). Our data suggests that romidepsin is an active HDAC inhibitor that also potentiates expanded NK and anti-CD20 CAR exPBNK activity against rituximab-sensitive and -resistant BL.

2.
Stem Cells ; 33(6): 1807-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25640200

ABSTRACT

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin blistering disease caused by mutations in COL7A1-encoding type VII collagen (C7). Currently, there is no curative therapy for patients with RDEB. Our previous studies demonstrated that human umbilical cord blood (HUCB) derived unrestricted somatic stem cells (USSCs) express C7 and facilitate wound healing in a murine wounding model. The primary objective of this study is to investigate the therapeutic functions of USSCs in the C7 null (Col7a1(-/-) ) C57BL6/J mice, a murine model of RDEB. We demonstrated that intrahepatic administration of USSCs significantly improved the blistering phenotype and enhanced the life span in the recipients. The injected USSCs trafficked to the sites of blistering and were incorporated in short-term in the recipients' skin and gastrointestinal tract. Consistent with an overall histological improvement in the epidermal-dermal adherence following USSC treatment, the expression of C7 at the basement membrane zone was detected and the previously disorganized integrin α6 distribution was normalized. We also demonstrated that USSCs treatment induced an infiltration of macrophages with a regenerative "M2" phenotype. Our data suggest that HUCB-derived USSCs improved the RDEB phenotype through multiple mechanisms. This study has warranted future clinical investigation of USSCs as a novel and universal allogeneic stem cell donor source in selected patients with RDEB.


Subject(s)
Epidermolysis Bullosa Dystrophica/therapy , Fetal Blood/cytology , Skin/cytology , Stem Cells/cytology , Animals , Collagen Type VII/deficiency , Collagen Type VII/metabolism , Disease Models, Animal , Humans , Mice , Mice, Knockout , Wound Healing/physiology
3.
Cancer Immunol Res ; 3(4): 333-44, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25492700

ABSTRACT

The prognosis is very dismal for patients with relapsed CD20(+) B-cell non-Hodgkin lymphoma (B-NHL). Facilitating the development of alternative novel therapeutic strategies is required to improve outcomes in patients with recurrent/refractory CD20(+) B-NHL. In this study, we investigated functional activities of anti-CD20 CAR-modified, expanded peripheral blood NK cells (exPBNK) following mRNA nucleofection against CD20(+) B-NHL in vitro and in vivo. CAR(+) exPBNK had significantly enhanced in vitro cytotoxicity, compared with CAR(-) exPBNK against CD20(+) Ramos (P < 0.05), Daudi, Raji, and two rituximab-resistant cell lines, Raji-2R and Raji-4RH (P < 0.001). As expected, there was no significant difference against CD20(-) RS4;11 and Jurkat cells. CD107a degranulation and intracellular IFNγ production were also enhanced in CAR(+) exPBNK in response to CD20(+) B-NHL -: specific stimulation. In Raji-Luc and Raji-2R-Luc xenografted NOD/SCID/γ-chain(-/-) (NSG) mice, the luciferase signals measured in the CAR(+) exPBNK-treated group were significantly reduced, compared with the signals measured in the untreated mice and in mice treated with the CAR(-) exPBNK. Furthermore, the CAR exPBNK-treated mice had significantly extended survival time (P < 0.001) and reduced tumor size, compared with those of the untreated and the CAR(-) exPBNK-treated mice (P < 0.05). These preclinical data suggest that ex vivo-exPBNK modified with anti-CD20 CAR may have therapeutic potential for treating patients with poor-risk CD20(+) hematologic malignancies.


Subject(s)
Antigens, CD20/immunology , Immunotherapy/methods , Killer Cells, Natural/immunology , Lymphoma, B-Cell/therapy , Animals , Antigens, CD20/analysis , Antigens, CD20/genetics , Burkitt Lymphoma/immunology , Burkitt Lymphoma/therapy , Cell Movement/immunology , Cytotoxicity, Immunologic , Humans , Killer Cells, Natural/transplantation , Lymphoma, B-Cell/immunology , Lysosomal-Associated Membrane Protein 1/metabolism , Mice, Inbred NOD , Mice, SCID , RNA, Messenger/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...