Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302634, 2024.
Article in English | MEDLINE | ID: mdl-38718001

ABSTRACT

In this paper, a new microstrip triplexer is designed to work at 2.5 GHz, 4.4 GHz and 6 GHz for mid-band 5G applications. All channels are flat with three low group delays (GDs) of 0.84 ns, 0.75 ns and 0.49 ns, respectively. Compared to the previously reported works, the proposed triplexer has the minimum group delay. The designed triplexer has 18.2%, 13.7%, 23.6% fractional bandwidths (FBW%) at 2.5 GHz, 4.4 GHz and 6 GHz, respectively. The obtained insertion losses (ILs) are low at all channels. These features are obtained without a noticeable increase in the overall size. A novel and simple resonator is used to design the proposed triplexer, which includes two pairs of coupled lines combined with a shunt stub. A perfect mathematical analysis is performed to find the resonator behavior and the layout optimization. The type of shunt stub is determined mathematically. Also, the smallness or largeness of some important physical dimensions is determined using the proposed mathematical analysis. Finally, the designed triplexer is fabricated and measured, where the measurement results verify the simulations.


Subject(s)
Equipment Design , Wireless Technology , Wireless Technology/instrumentation
2.
Sensors (Basel) ; 23(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631625

ABSTRACT

This paper presents a novel approach to reducing undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two standard patch antenna cells with 0.07λ edge-to-edge distance were designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator was applied between the antennas to suppress their mutual coupling. For the first time, the optimum values of the resonator geometry parameters were obtained using the proposed inverse artificial neural network (ANN) model, constructed from the sampled EM-simulation data of the system, and trained using the particle swarm optimization (PSO) algorithm. The inverse ANN surrogate directly yields the optimum resonator dimensions based on the target values of its S-parameters being the input parameters of the model. The involvement of surrogate modeling also contributes to the acceleration of the design process, as the array does not need to undergo direct EM-driven optimization. The obtained results indicate a remarkable cancellation of the surface currents between two antennas at their operating frequency, which translates into isolation as high as -46.2 dB at 2.45 GHz, corresponding to over 37 dB improvement as compared to the conventional setup.

3.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37512605

ABSTRACT

In this paper, a compact microstrip rat-race coupler at a 950 MHz operating frequency is designed, simulated, and fabricated. New branches are proposed in this design using high-/low- impedance open-ended resonators. In the conventional rat-race coupler, there are three long λ/4 branches and a 3λ/4 branch, and they occupy a very large area. In the presented designed, three compact branches are proposed for use instead of three λ/4 branches and an ultra-compact branch is suggested for use instead of the 3λ/4 branch. Additionally, an artificial neural network (ANN) approach is incorporated to improve the performance of the resonators using a radial basis function (RBF) network. The proposed compact structure has achieved a reduction of more than 82% compared with the size of the conventional coupler structures. Additionally, the proposed coupler can suppress the 2nd up to the 5th harmonic to improve the performance of the device.

4.
Sensors (Basel) ; 23(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050835

ABSTRACT

Global concerns regarding environmental preservation and energy sustainability have emerged due to the various impacts of constantly increasing energy demands and climate changes. With advancements in smart grid, edge computing, and Metaverse-based technologies, it has become apparent that conventional private power networks are insufficient to meet the demanding requirements of industrial applications. The unique capabilities of 5G, such as numerous connections, high reliability, low latency, and large bandwidth, make it an excellent choice for smart grid services. The 5G network industry will heavily rely on the Internet of Things (IoT) to progress, which will act as a catalyst for the development of the future smart grid. This comprehensive platform will not only include communication infrastructure for smart grid edge computing, but also Metaverse platforms. Therefore, optimizing the IoT is crucial to achieve a sustainable edge computing network. This paper presents the design, fabrication, and evaluation of a super-efficient GSM triplexer for 5G-enabled IoT in sustainable smart grid edge computing and the Metaverse. This component is intended to operate at 0.815/1.58/2.65 GHz for 5G applications. The physical layout of our triplexer is new, and it is presented for the first time in this work. The overall size of our triplexer is only 0.007 λg2, which is the smallest compared to the previous works. The proposed triplexer has very low insertion losses of 0.12 dB, 0.09 dB, and 0.42 dB at the first, second, and third channels, respectively. We achieved the minimum insertion losses compared to previous triplexers. Additionally, the common port return losses (RLs) were better than 26 dB at all channels.

5.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982849

ABSTRACT

The higher heating value (HHV) is the main property showing the energy amount of biomass samples. Several linear correlations based on either the proximate or the ultimate analysis have already been proposed for predicting biomass HHV. Since the HHV relationship with the proximate and ultimate analyses is not linear, nonlinear models might be a better alternative. Accordingly, this study employed the Elman recurrent neural network (ENN) to anticipate the HHV of different biomass samples from both the ultimate and proximate compositional analyses as the model inputs. The number of hidden neurons and the training algorithm were determined in such a way that the ENN model showed the highest prediction and generalization accuracy. The single hidden layer ENN with only four nodes, trained by the Levenberg-Marquardt algorithm, was identified as the most accurate model. The proposed ENN exhibited reliable prediction and generalization performance for estimating 532 experimental HHVs with a low mean absolute error of 0.67 and a mean square error of 0.96. In addition, the proposed ENN model provides a ground to clearly understand the dependency of the HHV on the fixed carbon, volatile matter, ash, carbon, hydrogen, nitrogen, oxygen, and sulfur content of biomass feedstocks.


Subject(s)
Heating , Neural Networks, Computer , Biomass , Algorithms , Carbon
6.
Micromachines (Basel) ; 14(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36984960

ABSTRACT

In this paper, two novel dual-band bandpass filters (BPFs) and a compact quad-channel diplexer working at 1.7/3.3 GHz and 1.9/3.6 GHz are proposed. In the proposed diplexer design, triangular loop resonators and rectangular loop resonators are used together to reduce the circuit size and improve diplexer performances. Insertion loss (IL) and return loss (RL) of the proposed diplexer are better than 0.8 dB and 21 dB, respectively, at these four operating frequencies. Output ports isolation parameter is better than 30 dB. With the achieved specifications, the proposed diplexer can be used in L and S band applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...