Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 16(11): 1087-1107, 2024.
Article in English | MEDLINE | ID: mdl-38722235

ABSTRACT

Aim: Using molecular hybridization approach, novel 18 quinoline derivatives (6a-11) were designed and synthesized as EGFR-TK inhibitors. Materials & methods: The antiproliferative activity was assessed against breast (MCF-7), leukemia (HL-60) and lung (A549) cancer cell lines. Moreover, the most active quinoline derivatives (6d and 8b) were further investigated for their potential as EGFR-TK inhibitors. In addition, cell cycle analysis and apoptosis induction activity were conducted. Results: A considerable cytotoxic activity was attained with IC50 values spanning from 0.06 to 1.12 µM. Besides, the quinoline derivatives 6d and 8b displayed potent inhibitory activity against EFGR with IC50 values of 0.18 and 0.08 µM, respectively. Conclusion: Accordingly, the afforded quinoline derivatives can be used as promising lead anticancer candidates for future optimization.


[Box: see text].


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , Quinolines , Humans , Quinolines/chemistry , Quinolines/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug , Drug Discovery
2.
RSC Adv ; 13(46): 32547-32557, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37936638

ABSTRACT

On the basis of the observed biological activity of coumarin and acrylamide derivatives, a new set of coumarin-acrylamide-CA-4 hybrids was designed and synthesized. These compounds were investigated for their cytotoxic activity against cancerous human liver cell line HepG2 cells using 5-fluorouracil (5-FU) as a reference drug. Compound 6e had promising antiproliferative activity with an IC50 value of 1.88 µM against HepG2 cells compared to 5-FU (IC50 = 7.18 µM). The results of ß-tubulin polymerization inhibition indicated that coumarin-acrylamide derivative 6e was the most active, with a percentage inhibition value of 84.34% compared to podophyllotoxin (88.19% ß-tubulin inhibition). Moreover, the active coumarin-acrylamide molecule 6e exerted cell cycle cession at the G2/M phase stage of HepG2 cells. In addition, this compound produced a 15.24-fold increase in apoptotic cell induction compared to no-treatment control. These observations were supported by histopathological studies of liver sections. The conducted docking studies illustrated that 6e is perfectly positioned within the tubulin colchicine binding site, indicating a significant interaction that may underlie its potent tubulin inhibitory activity. The main objective of the study was to develop new potent anticancer compounds that might be further optimized to prevent the progression of cancer disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...