Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 885: 163807, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37146814

ABSTRACT

Nearly 10-year (2013-2022) data on atmospheric particulate matters (PMs) were collected to investigate the air quality in a suburban site of Orléans city (France). The PM10 concentration decreased slightly between 2013 and 2022. PMs concentrations showed a monthly variation with higher concentration in cold periods. PM10 presented a clear bimodal diurnal variation peaking at morning rush hour and midnight, whereas the fine PMs such as PM2.5 and PM1.0 only had significant peaks during nighttime. Further, PM10 had more pronounced week-end effect than other fine PMs. COVID-19 lockdown impact on PMs levels was further investigated, showing that the lockdown during cold season could result in an increase of PMs concentrations because of the enhanced household heating. We concluded that PM10 could originate from biomass burning and fossil fuel related activities, air parcels from the western Europe through Paris were also important source of PM10 in the investigated area. Fine PMs, such as PM2.5 and PM1.0, originated mainly from biomass burning in addition to secondary formation at the local scale. This study provides a long-term PMs measurement database to explore the sources and characterization of PMs in central France, which could support future regulation and formulation of air quality standards.

2.
Sci Total Environ ; 858(Pt 2): 159905, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36343810

ABSTRACT

Atmospheric black carbon (BC) concentration over a nearly 5 year period (mid-2017-2021) was continuously monitored over a suburban area of Orléans city (France). Annual mean atmospheric BC concentration were 0.75 ± 0.65, 0.58 ± 0.44, 0.54 ± 0.64, 0.48 ± 0.46 and 0.50 ± 0.72 µg m-3, respectively, for the year of 2017, 2018, 2019, 2020 and 2021. Seasonal pattern was also observed with maximum concentration (0.70 ± 0.18 µg m-3) in winter and minimum concentration (0.38 ± 0.04 µg m-3) in summer. We found a different diurnal pattern between cold (winter and fall) and warm (spring and summer) seasons. Further, fossil fuel burning contributed >90 % of atmospheric BC in the summer and biomass burning had a contribution equivalent to that of the fossil fuel in the winter. Significant week days effect on BC concentrations was observed, indicating the important role of local emissions such as car exhaust in BC level at this site. The behavior of atmospheric BC level with COVID-19 lockdown was also analyzed. We found that during the lockdown in warm season (first lockdown: 27 March-10 May 2020 and third lockdown 17 March-3 May 2021) BC concentration were lower than in cold season (second lockdown: 29 October-15 December 2020), which could be mainly related to the BC emission from biomass burning for heating. This study provides a long-term BC measurement database input for air quality and climate models. The analysis of especially weekend and lockdown effect showed implications on future policymaking toward improving local and regional air quality as well.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Environmental Monitoring , Carbon/analysis , Communicable Disease Control , Respiratory Aerosols and Droplets , Soot/analysis , Fossil Fuels , Seasons
3.
Sci Total Environ ; 811: 152271, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34902409

ABSTRACT

Formaldehyde (HCHO) is one of the abundant indoor pollutants and has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). Indoor HCHO at schools is particularly important due to the high occupancy density and the health effects on children. In this study, high time resolved measurement of formaldehyde concentration was conducted in the classrooms at elementary school, high school and university under normal students' activities in three different locations in the Region Centre Val de Loire-France. Indoor average formaldehyde concentrations at those three educational institutions were observed to be in the range 10.96-17.95 µg/m3, not exceeding the World Health Organization (WHO) guideline value of 100 µg/m3. As expected, ventilation was found playing an important role in the control of indoor formaldehyde concentration. After opening windows for 30 min, formaldehyde level decreased by ~25% and 38% in the classroom at the elementary school and the high school, respectively. In addition to the primary sources, the objective of this study was also to determine potential secondary sources of indoor formaldehyde in these schools by measuring the other volatile organic compounds (VOCs) present in the classrooms by a Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). The measurements suggest that the release of residue from tobacco smokers is one of the major sources of indoor HCHO at the high school, which increases HCHO by ~55% averagely within 1 h. Moreover, the control experiments conducted in the university suggests that VOCs such as that released from cleaning products like terpenes, can contribute to the increase of indoor formaldehyde levels through chemical reactions with ozone. This study confirms simple recommendations to reduce the indoors HCHO concentration in schools: use ventilation systems, limit the emissions like cigarette smoke or cleaning products. It also points out that the secondary sources of formaldehyde must be also considered in the classroom.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Child , Environmental Monitoring , Formaldehyde/analysis , Humans , Schools , Universities , Ventilation , Volatile Organic Compounds/analysis
4.
Sci Total Environ ; 612: 1159-1170, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28892860

ABSTRACT

To expand our knowledge of regional fine particles in Central France (Centre-Val de Loire region), a field observation study of PM2.5 was carried out at Verneuil site (46.81467N, 2.61012E, 180m.a.s.l.) from 2011 to 2014. The mass concentrations of water-soluble inorganic ions (WSIIs), organic carbon (OC), elemental carbon (EC) and biomass burning tracer (Levoglucosan) in PM2.5 were measured. Annual average PM2.5 mass concentrations were 11.8, 9.5, 12.6 and 10.2µg·m-3 in 2011, 2012, 2013 and 2014, respectively, three of four higher than the WHO guideline of 10µg·m-3. Secondary inorganic aerosol (SIA) and organic matter (OM) appeared to be the major components in PM2.5 in Verneuil, contributing 30.1-41.8% and 36.9-46.3%, respectively. Main chemical species were observed in the following order: winter≥spring>autumn>summer. Backward atmospheric trajectories were performed using Hysplit model and suggested that the PM2.5 pollutants caused by atmospheric transport were mainly originated from European inland, mainly east to north-east areas. During the observation period, five pollution events were reported and indicated that not only the polluted air masses from central Europe but also the biomass burning from East Europe significantly influenced the air quality in Verneuil site.

5.
Sci Total Environ ; 584-585: 856-868, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28161044

ABSTRACT

Outdoor air samples collected during the pesticide agricultural application period (spring and summer) from a rural community in the Centre Region (France) were analyzed to investigate temporal variation of atmospheric pesticide levels (2006-2013) and human inhalation exposure in adults, children and infants. The most frequently detected pesticides were herbicides (trifluralin, pendimethalin), fungicides (chlorothalonil) and insecticides (lindane and α-endosulfan). The three currently-used pesticides most frequently detected presented concentrations ranging from 0.18 to 1128.38ngm-3; 0.13 to 117.32ngm-3 and 0.16 to 25.80ngm-3 for chlorothalonil, pendimethalin and trifluralin, respectively. The estimated chronic inhalation risk, expressed as Hazard Quotient (HQ), for adults, children and infants, was <1 for all measured pesticides. Likewise, the cumulative exposure for detected organophosphorus and chloroacetamide pesticides, was estimated using the Relative Potency Factor (RPF) and Hazard Index (HI) as metrics, which was indicated that no risk was observed. The cancer risk classified as likely or possibly carcinogen was estimated to be <8.93 E-05 in infants, for the detected pesticides.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Pesticides/analysis , Adult , Child , France , Humans , Infant , Inhalation Exposure , Risk Assessment , Seasons
6.
Inhal Toxicol ; 23(11): 627-40, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21879948

ABSTRACT

The increased levels of fine particles in the atmosphere are suspected of aggravating cardiopulmonary diseases, but the determinants of particle toxicity are poorly understood. This work aims at studying the role of composition and size in the toxicity of size-segregated particulate matter (PM) collected at different sites on human bronchial epithelial cells. PM were sampled at a traffic urban site (Urb S) and a rural site (Rur S) during the pesticide-spreading period. Ultrafine (UF), fine (F), and coarse (C) PM were characterized by their shape and chemical composition. Whatever the site, the finest PM (UF and F) induced the mRNA expression of CYP1A1, a biomarker of polyaromatic hydrocarbons (PAH) exposure, NQO-1 and heme HO-1, two antioxidant responsive element-driven genes; and two effect biomarkers, GM-CSF, a proinflammatory cytokine and amphiregulin (AR), a growth factor. C PM have a low or no effect. Interestingly, AR is more strongly induced by rural PM at the same mass exposure. These discrepancies suggest involvement of PM chemical composition: rural PM bearing the characteristics of aged aerosols with a high content of water-soluble components, and PM at urban kerbside sites containing mainly water-insoluble components. To conclude, we provide evidence that the finest PM fractions, whatever their origin, are more prone to induce exposure and effect biomarkers. The AR differential expression suggests a source-dependent effect requiring further investigation because of the role of this growth factor in airway remodeling, a characteristic feature of chronic lung respiratory diseases exacerbated by particulate pollution.


Subject(s)
Aerosols/toxicity , Agriculture , Air Pollutants/toxicity , Gene Expression Regulation/drug effects , Respiratory Mucosa/drug effects , Vehicle Emissions/toxicity , Aerosols/chemistry , Air Pollutants/chemistry , Amphiregulin , Biomarkers/metabolism , Cell Line , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , EGF Family of Proteins , Gene Expression Profiling , Glycoproteins/genetics , Glycoproteins/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inhalation Exposure , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics , Particle Size , RNA, Messenger/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Rural Population , Urban Population , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL