Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Biotechnol ; 21(2): e3291, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37228633

ABSTRACT

Background: The occurrence of aflatoxins in food products is a silent threat to human health worldwide. A range of strategies has been introduced to address the bioavailability of aflatoxins, which are considered microbial tools to provide a low-cost and promising approach. Objectives: The present study focused on the separation of yeast strains from the homemade cheese rind layer to investigate the ability of native yeasts to eliminate AB1 and AM1 from simulated gastrointestinal fluids. Material and Methods: Homemade cheese samples were prepared from different locations in Tehran provinces and yeast strains were isolated and identified through the biochemical methods and molecular analysis of internal transcribed spacer and D1/D2 domain of 26S rDNA regions. Isolated strains were screened using simulated gastrointestinal fluids, and the ability of yeast strains to absorb aflatoxin was evaluated. Results: Out of 13 strains, 7 yeast strains were not affected by 5 ppm AFM1 while 11 strains did not show any significant response to 5 mg.L-1 (ppm) of AFB1. On the other hand, 5 strains were able to successfully tolerate 20 ppm AFB1. Candidate yeasts showed different abilities to remove aflatoxins B1 and M1. In addition, C. lusitaniae, G. geotrichum, G. candidum, and C. sanyaensis exhibited a significant ability to detoxify aflatoxins from the gastrointestinal fluid, respectively. Conclusion: Our data suggest that yeast communities with essential effects on the quality of homemade cheese appear to be precise candidates for the potential elimination of aflatoxins from the gastrointestinal fluid.

2.
Int J Anal Chem ; 2017: 3084359, 2017.
Article in English | MEDLINE | ID: mdl-28473855

ABSTRACT

Cheese and yogurt are two kinds of nutritious dairy products that are used worldwide. The major preservatives in dairy products are sodium benzoate, potassium sorbate, and natamycin. The maximum permitted levels for these additives in cheese and yogurt are established according to Iranian national standards. In this study, we developed a method to detect these preservatives in dairy products by reversed phase chromatography with UV detection in 220 nm, simultaneously. This method was performed on C18 column with ammonium acetate buffer (pH = 5) and acetonitrile (73 : 27 v/v) as mobile phase. The method was carried out on 195 samples in 5 kinds of commercial cheeses and yogurts. The results demonstrated insufficient separation where limit of detection (LOD) and limit of quantitation (LOQ) ranged from 0.326 to 0.520 mg/kg and 0.989 to 1.575 mg/kg in benzoate and sorbate, respectively. The correlation coefficient of each calibration curve was mostly higher than 0.997. All samples contained sodium benzoate in various ranges. Natamycin and sorbate were detected in a remarkable amount of samples, while, according to Iranian national standard, only sorbate is permitted to be added in processed cheeses as a preservative. In order to control the quality of dairy products, determination of preservatives is necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...