Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4623, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816364

ABSTRACT

Finding evidence of non-trivial pairing states is one of the greatest experimental challenges in the field of unconventional superconductivity. Such evidence requires phase-sensitive probes susceptible to the internal structure of the order parameter. We report the measurement of the Little-Parks effect in the unconventional superconductor candidate 4Hb-TaS2. In half of our rings, which are fabricated from single-crystals, we find a π-shift in the transition-temperature oscillations. According to theory, such a π-shift is only possible if the order parameter is non-s-wave. In the absence of crystallographic defects, the shift provides evidence of a multi-component order parameter. Thus, this observation increases the likelihood of the two-component order parameter scenario in 4Hb-TaS2. Furthermore, we show that Tc is enhanced as a function of the out-of-plane field when a constant in-plane field is applied, which we explain using a two-component order-parameter.

2.
Nat Commun ; 13(1): 5900, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36202803

ABSTRACT

Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward. We show that a small upward buckling yields record electrical frequency tunability, whereas larger buckling can achieve Euler-Bernoulli bi-stability, the smallest mechanical resonator with two stable configurations to date. We believe that these recently-discovered carbon nanotube devices will open new avenues for realizing nano-sensors, mechanical memory elements and mechanical parametric amplifiers. Furthermore, we present a three-dimensional theoretical analysis revealing significant nonlinear coupling between the in-plane and out-of-plane static and dynamic modes of motion, and a unique three-dimensional Euler-Bernoulli snap-through transition. We utilize this coupling to provide a conclusive explanation for the low quality factor in carbon nanotube resonators at room temperature, key in understanding dissipation mechanisms at the nano scale.

3.
Nano Lett ; 22(18): 7304-7310, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36069744

ABSTRACT

Bistable arched beams exhibiting Euler-Bernoulli snap-through buckling are widely investigated as promising candidates for various potential applications, such as memory devices, energy harvesters, sensors, and actuators. Recently, we reported the realization of a buckled suspended carbon nanotube (CNT) based bistable resonator, which exhibits a unique three-dimensional snap-through transition and an extremely large change in frequency as a result. In this article, we address a unique characteristic of these devices in which a significant change in the DC conductance is also observed at the mechanical snap-through transition. Through the analysis of this phenomenon, we arrive at several important conclusions: we find that the common approach to determining CNT vibrational resonance amplitude is inaccurate; we find evidence that latching phenomena should be easily realizable, relevant for RF switches and nonvolatile memory devices. Finally, we present evidence for possible inner shell sliding, which is relevant for understanding interlayer coupling and moiré pattern research.

4.
Nanotechnology ; 32(33)2021 May 24.
Article in English | MEDLINE | ID: mdl-33930880

ABSTRACT

We demonstrate band to band tunneling (BTBT) in a carbon nanotube (CNT) field effect transistor. We employ local electrostatic doping assisted by charged traps within the oxide to produce an intramolecular PN junction along the CNT. These characteristics apply for both metallic (m-CNTs) and semiconducting (SC-CNTs) CNTs. For m-CNTs we present a hysteretic transfer characteristic which originates from local electrostatic doping in the middle segment of the CNT. This controlled doping is reversible and results in formation and destruction of a PN junction along the CNT channel. For SC-CNTs we observe BTBT, and analysis based on the WKB approximation reveals a very narrow depletion region and high transmission probability at the optimal energy bands overlap. These results may assist in developing a non-volatile one-dimensional PN junction memory cell and designing a tunneling based field effect transistor.

5.
Nano Lett ; 18(1): 190-201, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29202247

ABSTRACT

Silicon-based photodetectors cannot distinguish between different wavelengths. Therefore, these detectors relay on color-specific filters to achieve color separation. Color filters add complexity to color sensitive device fabrication, and hinder miniaturization of such devices. Here, we report an ultrasmall (as small as ∼20 nm by 300 nm), red-green-blue-violet (RGBV) filter-free spectrally gated field effect transistor (SGFET) detectors. These photodetectors are based on organic-silicon nanowire hybrid FET devices, capable of detecting specific visible wavelength spectrum with full width at half-maxima (fwhm) under 100 nm. Each SGFET is controlled by a distinctive RGBV spectral range, according to its specific organic fluorophore functionalization. The spectral-specific RGBV detection is accomplished via covalent attachment of different fluorophores. The fluorophore molecules inject electrons into the nanowire structure as a result of light absorption at the appropriate RGBV spectral range. These photoinduced electrons modify the occupancies of the oxide's surface states, shifting the device threshold voltage, thus changing its conductivity, and functioning as a negative stress bias in a p-type SiNW FETs. A positive biasing can be achieved via UV light-induced ionization, which leads to detrapping and translocation of electrons at the oxide layer. Furthermore, a novel theoretical model on the mechanism of action of these devices was developed. Also, we show that suspended SGFETs can function as nonvolatile memory elements, which unlike fast-relaxing on-surface SGFETs, can store discrete "on" (RGBV illumination) and "off" (UV illumination) states for several days at ambient conditions. We also demonstrate a unique single-nanowire multicolor photodetector, enabling in principle a broad spectral detection over a single silicon nanowire element. These highly compact, spectral-controlled nanodevices have the potential to serve in various future novel optoelectric applications.

6.
Chemphyschem ; 13(18): 4202-6, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23165969

ABSTRACT

Humidity plays an important role in molecular electronics. It facilitates charge movement on top of dielectric layers and modifies the device transfer characteristics. Using two different methods to probe temporal charge redistribution on the surface of dielectrics, we were able to extract the surface humidity for the first time. The first method is based on the relaxation time constants of the current through carbon nanotube field-effect transistors (CNTFETs), and the second is based on electric force microscopy (EFM) measurements. Moreover, we found that applying external gate biases modifies the surface humidity. A theoretical model based on dielectrophoretic attraction between the water molecules and the substrate is introduced to explain this observation, and the results support our hypothesis. Furthermore, it is found that upon the adsorption of two to three layers of water the surface conductivity saturates.

7.
Nano Lett ; 5(2): 287-90, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15794612

ABSTRACT

We perform low-temperature electrical transport measurements on gated, quasi-2D graphite quantum dots. In devices with low contact resistances, we use longitudinal and Hall resistances to extract carrier densities of 9.2-13 x 10(12) cm(-2) and mobilities of 200-1900 cm(2)/V.s. In devices with high resistance contacts, we observe Coulomb blockade phenomena and infer the charging energies and capacitive couplings. These experiments demonstrate that electrons in mesoscopic graphite pieces are delocalized over nearly the whole graphite piece down to low temperatures.


Subject(s)
Electrochemistry/methods , Electrodes , Graphite/chemistry , Magnetics , Nanotubes/chemistry , Quantum Dots , Static Electricity , Electric Conductivity , Graphite/analysis , Materials Testing , Nanotubes/analysis , Nanotubes/ultrastructure
8.
Nature ; 431(7006): 284-7, 2004 Sep 16.
Article in English | MEDLINE | ID: mdl-15372026

ABSTRACT

Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection, radio-frequency signal processing, and as a model system for exploring quantum phenomena in macroscopic systems. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

9.
Nature ; 428(6982): 536-9, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15057825

ABSTRACT

The remarkable transport properties of carbon nanotubes (CNTs) are determined by their unusual electronic structure. The electronic states of a carbon nanotube form one-dimensional electron and hole sub-bands, which, in general, are separated by an energy gap. States near the energy gap are predicted to have an orbital magnetic moment, mu(orb), that is much larger than the Bohr magneton (the magnetic moment of an electron due to its spin). This large moment is due to the motion of electrons around the circumference of the nanotube, and is thought to play a role in the magnetic susceptibility of CNTs and the magnetoresistance observed in large multiwalled CNTs. But the coupling between magnetic field and the electronic states of individual nanotubes remains to be quantified experimentally. Here we report electrical measurements of relatively small diameter (2-5 nm) individual CNTs in the presence of an axial magnetic field. We observe field-induced energy shifts of electronic states and the associated changes in sub-band structure, which enable us to confirm quantitatively the predicted values for mu(orb).

10.
Phys Rev Lett ; 90(15): 156401, 2003 Apr 18.
Article in English | MEDLINE | ID: mdl-12732057

ABSTRACT

We show that the band structure of a carbon nanotube (NT) can be dramatically altered by mechanical strain. We employ an atomic force microscope tip to simultaneously vary the NT strain and to electrostatically gate the tube. We show that strain can open a band gap in a metallic NT and modify the band gap in a semiconducting NT. Theoretical work predicts that band gap changes can range between +/-100 meV per 1% stretch, depending on NT chirality, and our measurements are consistent with this predicted range.

11.
Nature ; 417(6890): 722-5, 2002 Jun 13.
Article in English | MEDLINE | ID: mdl-12066179

ABSTRACT

Using molecules as electronic components is a powerful new direction in the science and technology of nanometre-scale systems. Experiments to date have examined a multitude of molecules conducting in parallel, or, in some cases, transport through single molecules. The latter includes molecules probed in a two-terminal geometry using mechanically controlled break junctions or scanning probes as well as three-terminal single-molecule transistors made from carbon nanotubes, C(60) molecules, and conjugated molecules diluted in a less-conducting molecular layer. The ultimate limit would be a device where electrons hop on to, and off from, a single atom between two contacts. Here we describe transistors incorporating a transition-metal complex designed so that electron transport occurs through well-defined charge states of a single atom. We examine two related molecules containing a Co ion bonded to polypyridyl ligands, attached to insulating tethers of different lengths. Changing the length of the insulating tether alters the coupling of the ion to the electrodes, enabling the fabrication of devices that exhibit either single-electron phenomena, such as Coulomb blockade, or the Kondo effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...