Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 28(6): 1175-1190, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910447

ABSTRACT

Zinc oxide nano particles (ZnO NPs) have been employed as a novel strategy to regulate plant tolerance and alleviate heavy metal stress, but our scanty knowledge regarding the systematic role of ZnO NPs to ameliorate chromium (Cr) stress especially in rice necessitates an in-depth investigation. An experiment was performed to evaluate the effect of different concentrations of ZnO NPs (e.g., 0, 25, 50, 100 mg/L) in ameliorating the Cr toxicity and accumulation in rice seedlings in hydroponic system. Our results demonstrated that Cr (100 µM) severely inhibited the rice seedling growth, whereas exogenous treatment of ZnO NPs significantly alleviated Cr toxicity stress and promoted the plant growth. Moreover, application of ZnO NPs significantly augmented the germination energy, germination percentage, germination index, and vigor index. In addition, biomass accumulation, antioxidants (SOD, CAT, POD), nutrient acquisition (Zn, Fe) was also improved in ZnO NPs-treated plants, while the lipid peroxidation (MDA, H2O2), electrolyte leakage as well as Cr uptake and in-planta accumulation was significantly decreased. The burgeoning effects were more apparent at ZnO NPs (100 mg/L) suggesting the optimum treatment to ameliorate Cr induced oxidative stress in rice plants. Furthermore, the treatment of ZnO NPs (100 mg/L) reduced the level of endogenous abscisic acid (ABA) and stimulated the growth regulator hormones such as brassinosteroids (BRs) possibly linked with enhanced phytochelatins (PCs) levels. The ultrastructure analysis at cellular level of rice revealed that the application of 100 mg/L ZnO NPs protected the chloroplast integrity and other cell organells via improvement in plant ionomics, antioxidant activities and down regulating Cr induced oxidative stress in rice plants. Conclusively, observations of the current study will be helpful in developing stratigies to decrease Cr contamination in food chain by employing ZnO NPs and to mitigate the drastic effects of Cr in plants for the sustainable crop growth.

2.
Sci Rep ; 5: 14278, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26419216

ABSTRACT

The present study was designed to highlight the impact of seed priming with polyethylene glycol on physiological and molecular mechanism of two cultivars of Oryza sativa L. under different levels of zinc oxide nanorods (0, 250, 500 and 750 mg L(-1)). Plant growth parameters were significantly increased in seed priming with 30% PEG under nano-ZnO stress in both cultivars. Whereas, this increase was more prominent in cultivar Qian You No. 1 as compared to cultivar Zhu Liang You 06. Significant increase in photosynthetic pigment with PEG priming under stress. Antioxidant enzymes activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as malondialdehyde (MDA) contents were significantly reduced with PEG priming under nano-ZnO stress. Gene expression analysis also suggested that expression of APXa, APXb, CATa, CATb, CATc, SOD1, SOD2 and SOD3 genes were down regulated with PEG priming as compared to non-primed seeds under stress. The ultrastructural analysis showed that leaf mesophyll and root cells were significantly damaged under nano-ZnO stress in both cultivars but the damage was prominent in Zhu Liang You 06. However, seed priming with PEG significantly alleviate the toxic effects of nano-ZnO stress and improved the cell structures of leaf and roots in both cultivars.


Subject(s)
Germination/drug effects , Oryza/drug effects , Oryza/physiology , Polyethylene Glycols/pharmacology , Stress, Physiological , Zinc Oxide/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant , Malondialdehyde/metabolism , Oryza/ultrastructure , Oxidative Stress , Photosynthesis/drug effects , Pigments, Biological , Seedlings/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...