Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Public Health ; 19(1): 249, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30819132

ABSTRACT

BACKGROUND: With limited resources and spatio-temporal heterogeneity of malaria in developing countries, it is still difficult to assess the real impact of socioeconomic and environmental factors in order to set up targeted campaigns against malaria at an accurate scale. Our goal was to detect malaria hotspots in rural area and assess the extent to which household socioeconomic status and meteorological recordings may explain the occurrence and evolution of these hotspots. METHODS: Data on malaria cases from 2010 to 2014 and on socioeconomic and meteorological factors were acquired from four health facilities within the Nanoro demographic surveillance area. Statistical cross correlation was used to quantify the temporal association between weekly malaria incidence and meteorological factors. Local spatial autocorrelation analysis was performed and restricted to each transmission period using Kulldorff's elliptic spatial scan statistic. Univariate and multivariable analysis were used to assess the principal socioeconomic and meteorological determinants of malaria hotspots using a Generalized Estimating Equation (GEE) approach. RESULTS: Rainfall and temperature were positively and significantly associated with malaria incidence, with a lag time of 9 and 14 weeks, respectively. Spatial analysis showed a spatial autocorrelation of malaria incidence and significant hotspots which was relatively stable throughout the study period. Furthermore, low socioeconomic status households were strongly associated with malaria hotspots (aOR = 1.21, 95% confidence interval: 1.03-1.40). CONCLUSION: These fine-scale findings highlight a relatively stable spatio-temporal pattern of malaria risk and indicate that social and environmental factors play an important role in malaria incidence. Integrating data on these factors into existing malaria struggle tools would help in the development of sustainable bottleneck strategies adapted to the local context for malaria control.


Subject(s)
Malaria/epidemiology , Population Surveillance , Rural Population/statistics & numerical data , Seasons , Burkina Faso/epidemiology , Humans , Incidence , Meteorological Concepts , Socioeconomic Factors , Spatial Analysis
2.
Malar J ; 17(1): 138, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29609606

ABSTRACT

BACKGROUND: Given the scarcity of resources in developing countries, malaria treatment requires new strategies that target specific populations, time periods and geographical areas. While the spatial pattern of malaria transmission is known to vary depending on local conditions, its temporal evolution has yet to be evaluated. The aim of this study was to determine the spatio-temporal dynamic of malaria in the central region of Burkina Faso, taking into account meteorological factors. METHODS: Drawing on national databases, 101 health areas were studied from 2011 to 2015, together with weekly meteorological data (temperature, number of rain events, rainfall, humidity, wind speed). Meteorological factors were investigated using a principal component analysis (PCA) to reduce dimensions and avoid collinearities. The Box-Jenkins ARIMA model was used to test the stationarity of the time series. The impact of meteorological factors on malaria incidence was measured with a general additive model. A change-point analysis was performed to detect malaria transmission periods. For each transmission period, malaria incidence was mapped and hotspots were identified using spatial cluster detection. RESULTS: Malaria incidence never went below 13.7 cases/10,000 person-weeks. The first and second PCA components (constituted by rain/humidity and temperatures, respectively) were correlated with malaria incidence with a lag of 2 weeks. The impact of temperature was significantly non-linear: malaria incidence increased with temperature but declined sharply with high temperature. A significant positive linear trend was found for the entire time period. Three transmission periods were detected: low (16.8-29.9 cases/10,000 person-weeks), high (51.7-84.8 cases/10,000 person-weeks), and intermediate (26.7-32.2 cases/10,000 person-weeks). The location of clusters identified as high risk varied little across transmission periods. CONCLUSION: This study highlighted the spatial variability and relative temporal stability of malaria incidence around the capital Ouagadougou, in the central region of Burkina Faso. Despite increasing efforts in fighting the disease, malaria incidence remained high and increased over the period of study. Hotspots, particularly those detected for low transmission periods, should be investigated further to uncover the local environmental and behavioural factors of transmission, and hence to allow for the development of better targeted control strategies.


Subject(s)
Malaria/epidemiology , Burkina Faso/epidemiology , Humans , Incidence , Malaria/prevention & control , Spatio-Temporal Analysis , Weather
3.
Environ Health Perspect ; 122(7): 679-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24633049

ABSTRACT

BACKGROUND: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. OBJECTIVES: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. DATA AND METHODS: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. RESULTS: At the national level, a model using early incidence in December and averaged November-December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having the greatest impact. A model with surface dust concentration as a predictive variable performed indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 = 0.41). CONCLUSIONS: We showed that wind and dust information and incidence in the early dry season predict part of the year-to-year variability of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, and other conditions are potentially conducive to an epidemic.


Subject(s)
Aerosols/analysis , Climate , Dust/analysis , Meningitis, Meningococcal/epidemiology , Forecasting , Humans , Incidence , Linear Models , Meningitis, Meningococcal/microbiology , Models, Statistical , Niger/epidemiology , Seasons , Soil , Wind
4.
Int J Health Geogr ; 7: 34, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-18597686

ABSTRACT

BACKGROUND: Every year, West Africa is afflicted with Meningococcal Meningitis (MCM) disease outbreaks. Although the seasonal and spatial patterns of disease cases have been shown to be linked to climate, the mechanisms responsible for these patterns are still not well identified. RESULTS: A statistical analysis of annual incidence of MCM and climatic variables has been performed to highlight the relationships between climate and MCM for two highly afflicted countries: Niger and Burkina Faso. We found that disease resurgence in Niger and in Burkina Faso is likely to be partly controlled by the winter climate through enhanced Harmattan winds. Statistical models based only on climate indexes work well in Niger showing that 25% of the disease variance from year-to-year in this country can be explained by the winter climate but fail to represent accurately the disease dynamics in Burkina Faso. CONCLUSION: This study is an exploratory attempt to predict meningitis incidence by using only climate information. Although it points out significant statistical results it also stresses the difficulty of relating climate to interannual variability in meningitis outbreaks.


Subject(s)
Disease Outbreaks , Meningitis, Meningococcal/epidemiology , Meteorological Concepts , Seasons , Africa, Western/epidemiology , Burkina Faso/epidemiology , Humans , Incidence , Models, Theoretical , Niger/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...