Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-18786647

ABSTRACT

The amino acid sequences of three pepsinogens (PG1, PG2 and PG3) of Pacific bluefin tuna (Thunnus orientalis) were deduced by cloning and nucleotide sequencing of the corresponding cDNAs. The amino acid sequences of the pre-forms of PG1, PG2 and PG3 were composed of a signal peptide (16 residues each), a propeptide (41, 37 and 35 residues, respectively) and a pepsin moiety (321, 323 and 332 residues, respectively). Amino acid sequence comparison and phylogenetic analysis indicated that PG1 and PG2 belong to the pepsinogen A family and PG3 to the pepsinogen C family. Homology modeling of the three-dimensional structure suggested that the remarkably high specific activity of PG2 toward hemoglobin, which had been found previously, was partly due to a characteristic deletion of several residues in the S1'-loop region that widens the space of the active site cleft region so as to accommodate protein and larger polypeptide substrates more efficiently. Including the tuna and all other fish pepsinogen sequences available to date, the molecular phylogenetic comparison was made with reference to evolution of fish pepsinogens. It was suggested that functional divergences of pepsinogens (pepsins) occurring in fishes as well as in mammals, correlated with differences in various aspects of fish physiology.


Subject(s)
Evolution, Molecular , Pepsinogens/chemistry , Pepsinogens/genetics , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Molecular Sequence Data , Protein Sorting Signals , Structural Homology, Protein , Tuna
2.
Comp Biochem Physiol B Biochem Mol Biol ; 146(3): 412-20, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17258488

ABSTRACT

Two major pepsinogens, PG1 and PG2, and one minor pepsinogen, PG3, were purified from the gastric mucosa of African coelacanth, Latimeria chalumnae (Actinistia). PG1 and PG2 were much less acidic than PG3. Their molecular masses were estimated by SDS-PAGE to be 37.0, 37.0 and 39.3 kD, respectively. When incubated at pH 2.0, PG1 and PG2 were converted autocatalytically to the mature pepsins through an intermediate form, whereas PG3 was converted to an intermediate form, but not to the mature pepsin autocatalytically. The N-terminal sequencing indicated that the 42 residue sequences of the propeptides of PG1 and PG2 were essentially identical with each other, but different from that of PG3. A phylogenetic tree based on the N-terminal propeptide sequences indicates that PG1 and PG2 belong to the pepsinogen A group, and PG3 to the pepsinogen C group. From the phylogenetic comparison, coelacanth PG1 and PG2 appear to be evolutionally closer to tetrapod pepsinogens A than ray-finned fish pepsinogens A, consistent with the traditional systematics. Pepsins 1 and 2 were essentially identical with each other and rather similar to mammalian pepsins A in the pH optimum toward hemoglobin (pH 2-2.5), the cleavage specificity toward oxidized insulin B chain and strong inhibition by pepstatin, except that they possessed a significant level of activity in the higher pH range unlike mammalian pepsins A.


Subject(s)
Fishes/genetics , Gastric Mucosa/enzymology , Pepsin A/genetics , Pepsinogens/genetics , Amino Acid Sequence , Animals , Dose-Response Relationship, Drug , Enzyme Activation , Molecular Sequence Data , Pepsin A/chemistry , Pepsin A/metabolism , Pepsinogens/isolation & purification , Pepsinogens/metabolism , Phylogeny , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...