Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
J Mol Histol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172327

ABSTRACT

An actin binding protein, gelsolin (GSN) has two isoforms, plasma (pGSN) and cytosolic (cGSN). Changes in pGSN and/or cGSN levels have been shown to be associated with the pathogenesis of several diseases. The aim of this study was to evaluate changes in intracellular and extracellular GSNlevels with HIF-1 in animals exposed to chronic sustained hypoxia (CSH), in addition to apoptosis and the cellular redox status. The rats in the Sham group were exposed to 21% O2, and the rats in the hypoxia groups were exposed to 13 and 10% O2, respectively. Plasma pGSN, HIF-1α, Total Antioxidant Status (TAS) and Total Oxidant Status (TOS), and lung tissue pGSN, HIF-1α, TAS, TOS, GSN levels, and apoptotic cell numbers were measured. HIF-1α levels were found to increase significantly in the tissue, especially in the group with severe hypoxia, both in biochemical and histological examinations. pGSN levels were also significantly decreased in both plasma and tissue. Significant increases in tissue were observed in cGSN. It was observed that while the antioxidant activity was dominant in the tissue, the oxidant activity was dominant in the plasma. In particular, the response to hypoxia regulated by HIF-1 is very important for cellular survival. The results of this study showed that the increase in cGSN and TAS levels in the lung tissue together with HIF-1α can be considered as the activation of mechanisms for cellular protection.

2.
Rev Assoc Med Bras (1992) ; 70(7): e20240136, 2024.
Article in English | MEDLINE | ID: mdl-39045937

ABSTRACT

OBJECTIVE: Cisplatin, a widely used anticancer agent, induces hepatotoxicity alongside organ damage. Understanding Cisplatin's toxicity mechanism and developing preventive measures are crucial. Our study explores Myricetin, a flavonoid, for its protective effects against Cisplatin-induced hepatotoxicity. METHODS: In our study, a total of 32 Wistar albino male rats were utilized, which were categorized into four distinct groups: Control, Myricetin, Cisplatin, and Myricetin+Cisplatin. For the histological assessment of hepatic tissues, hematoxylin-eosin and periodic acid Schiff staining were employed, alongside immunohistochemical measurements of TNF-α, interleukin-17, and interleukin-6 immunoreactivity. Additionally, aspartate transaminase and alanine transaminase values were examined by biochemical analysis. RESULTS: In the histological evaluation of the tissues, a normal healthy cell structure and a strong periodic acid Schiff (+) reaction were observed in the hepatocyte cells in the tissues of the Control and Myricetin groups, while intense eosinophilia, minimal vacuolization, congestion, and sinusoidal expansions were observed in the hematoxylin-eosin stainings, and a decrease in the positive reaction in the periodic acid Schiff staining was observed in the Cisplatin group. Consistent with these histological findings, an increase in TNF-α, interleukin-17, and interleukin-6 expressions (p<0.0001) and a concomitant increase in aspartate transaminase and alanine transaminase values were observed in the Cisplatin group. In the group protected by Myricetin, a significant improvement was observed in all these histological and biochemical values. CONCLUSION: Cisplatin induces notable histopathological alterations in the liver. In this context, Myricetin exhibits the potential to alleviate Cisplatin-induced damage by modulating histological parameters and biochemical processes.


Subject(s)
Alanine Transaminase , Antineoplastic Agents , Aspartate Aminotransferases , Chemical and Drug Induced Liver Injury , Cisplatin , Flavonoids , Interleukin-6 , Rats, Wistar , Tumor Necrosis Factor-alpha , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Cisplatin/toxicity , Male , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Interleukin-6/analysis , Interleukin-6/metabolism , Liver/drug effects , Liver/pathology , Rats , Interleukin-17/metabolism , Immunohistochemistry
3.
Iran J Basic Med Sci ; 27(6): 733-739, 2024.
Article in English | MEDLINE | ID: mdl-38645491

ABSTRACT

Objectives: Methotrexate (MTX) is a drug with anti-inflammatory and immunosuppressive effects and is also a folic acid antagonist. Our aim in this study is to determine the molecular mechanisms of cardiotoxicity caused by MTX, a chemotherapeutic drug, and to evaluate the protective effects of vitamin B12 on this toxicity. Materials and Methods: A total of 32 rats were used in our study and 4 groups were formed. Control group, Vit B12 group (3 µg/kg B12 for 15 days, IP), MTX group (20 mg/kg MTX single dose on day 8 of the experiment, IP), MTX +Vit B12 group (3 µg/kg, IP ), Vit B12 throughout the 15 days, and a single dose of 20 mg/kg MTX (IP) on day 8 of the experiment. Immunohistochemically, expressions of hypoxia-inducible factor 1α (HIF1-α), vascular endothelial growth factor receptor-2 (VEGFR-2), erythropoietin (EPO), and interleukin-6 (IL-6) were evaluated in the heart tissue. Total catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were measured in the heart tissue. At the same time, ANP and NT-proBNP levels were measured in the blood serum. Results: In the study, the expression of HIF1-α and VEGFR-2 increased significantly in the MTX group, while IL-6 and EPO significantly decreased. At the same time, CAT and SOD levels were significantly decreased and MDA levels increased significantly in the MTX group. While vitamin B12 significantly corrected all these values, it also greatly reduced the increases in ANP and NT-proBNP levels caused by MTX. Conclusion: It is important to use Vit B12 before and after MTX administration to replace the folate that MTX has reduced.

4.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 70(7): e20240136, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1565048

ABSTRACT

SUMMARY OBJECTIVE: Cisplatin, a widely used anticancer agent, induces hepatotoxicity alongside organ damage. Understanding Cisplatin's toxicity mechanism and developing preventive measures are crucial. Our study explores Myricetin, a flavonoid, for its protective effects against Cisplatin-induced hepatotoxicity. METHODS: In our study, a total of 32 Wistar albino male rats were utilized, which were categorized into four distinct groups: Control, Myricetin, Cisplatin, and Myricetin+Cisplatin. For the histological assessment of hepatic tissues, hematoxylin-eosin and periodic acid Schiff staining were employed, alongside immunohistochemical measurements of TNF-α, interleukin-17, and interleukin-6 immunoreactivity. Additionally, aspartate transaminase and alanine transaminase values were examined by biochemical analysis. RESULTS: In the histological evaluation of the tissues, a normal healthy cell structure and a strong periodic acid Schiff (+) reaction were observed in the hepatocyte cells in the tissues of the Control and Myricetin groups, while intense eosinophilia, minimal vacuolization, congestion, and sinusoidal expansions were observed in the hematoxylin-eosin stainings, and a decrease in the positive reaction in the periodic acid Schiff staining was observed in the Cisplatin group. Consistent with these histological findings, an increase in TNF-α, interleukin-17, and interleukin-6 expressions (p<0.0001) and a concomitant increase in aspartate transaminase and alanine transaminase values were observed in the Cisplatin group. In the group protected by Myricetin, a significant improvement was observed in all these histological and biochemical values. CONCLUSION: Cisplatin induces notable histopathological alterations in the liver. In this context, Myricetin exhibits the potential to alleviate Cisplatin-induced damage by modulating histological parameters and biochemical processes.

5.
Ulus Travma Acil Cerrahi Derg ; 29(11): 1218-1227, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889023

ABSTRACT

BACKGROUND: It is known that curcumin and umbilical cord-derived mesenchymal stem cells (UC-MSCs) positively affect experi-mental tendon injury healing. This study investigated individual effects and potential synergistic effects of using curcumin and UC-MSCs alone and together. METHODS: Eighty female Wistar albino rats were randomly divided into five groups: Control, curcumin, sesame oil, MSCs, and Curcumin+MSCs groups. In all rats, punch tendon defect was created in both right and left Achilles tendons. While no additional treatment was applied to the control group, curcumin, sesame oil used as a solvent for curcumin, MSCs, and MSCs and curcumin com-bination were applied locally to the injury site, respectively, in the other groups. Curcumin was solved in sesame oil before application. In each group, half of the animals were euthanized in the post-operative 2nd week while the other half were euthanized in the post-operative 4th week. The right Achilles was used for biomechanical testing, while the left Achilles was used for histological evaluation and immunohistochemical analysis of type I, Type III collagen, and tenomodulin. RESULTS: Histologically, significant improvement was observed in the curcumin, MSCs, and Curcumin+ MSCs groups compared to the control Group in the 2nd week. In the 2nd and 4th weeks, Type III collagen was significantly increased in the curcumin group com-pared to the control group. In week 4, tenomodulin increased significantly in the curcumin and MSCs groups compared to the control group. Tendon tensile strength increased significantly in MSCs and Curcumin+MSCs groups compared to the control group in the 4th week. No superiority was observed between the treatment groups regarding their positive effects on recovery. CONCLUSION: Locally used curcumin and UC-MSCs showed positive effects that were not superior to each other in the healing of injury caused by a punch in the Achilles tendons of rats. However, synergistic effects on healing were not observed when they were applied together.


Subject(s)
Achilles Tendon , Curcumin , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rats , Female , Animals , Achilles Tendon/injuries , Achilles Tendon/pathology , Achilles Tendon/surgery , Curcumin/pharmacology , Rats, Wistar , Collagen Type III , Sesame Oil
6.
J Biochem Mol Toxicol ; 37(11): e23471, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466128

ABSTRACT

Nonylphenol (NP), causes various harmful effects such as cognitive impairment and neurotoxicity. Thymoquinone (TQ), has antioxidant, anti-inflammatory, and neuroprotective properties. In this study, our aim is to investigate the effects of TQ on the brain damage caused by NP. Corn oil was applied to the control group. NP (100 mg/kg/day) was administered to the NP and NP + TQ groups for 21 days. TQ (5 mg/kg/day) was administered to the NP + TQ and TQ groups for 7 after 21 days. At the end of the experiment, the new object recognition test was applied to the rats and the rats were killed and their brain tissues were removed. Sections taken from brain tissues were stained with hematoxylin-eosin for histopathological evaluation. In addition, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), Cas-3, and nerve growth factor (NGF) immunoreactivities were evaluated in brain tissue sections. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were determined. Comet assay was applied to determine DNA damage in cells. The results of our study showed that NP, caused behavioral disorders and damage to the cerebral cortex in rats. This damage in the form of neuron degeneration seen in the cortex was associated with apoptosis involving Cas-3 activation, increased DNA damage, and free oxygen radicals. NP, SOD, and CAT caused a decrease in enzyme activities. In addition, the cellular protein NeuN was decreased, astrocytosis-associated GFAP was increased, and growth factor NGF was decreased. When all our evaluations are taken together, treatment with TQ showed an ameliorative effect on the behavioral impairment and brain damage caused by NP exposure.


Subject(s)
Brain Injuries , Oxidative Stress , Rats , Animals , Nerve Growth Factor/metabolism , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Brain/metabolism
7.
Turk J Med Sci ; 53(1): 40-50, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36945945

ABSTRACT

BACKGROUND: Paclitaxel is a widely used drug for the treatment of cancer, but it possesses toxic effects on male reproductive system. Administering paclitaxel with an antioxidant has become a strategy for preventing the side effects of paclitaxel. Although curcumin is an antioxidant, data concerning the effect of curcumin on paclitaxel-induced testis tissue are lacking. The present study was established to examine the protective impact of curcumin against testicular damage induced by paclitaxel. METHODS: In the study, 40 Wistar albino male rats were used and randomly divided into 4 groups (n:10). The control group received only saline solution; the curcumin group received curcumin throughout the experiment; the paclitaxel group received a total of four doses of paclitaxel on days 1, 7, 14, and 21 of the experiment; curcumin + paclitaxel group received curcumin throughout the experiment and a total of four doses of paclitaxel on days 1, 7, 14, and 21 of the experiment. At the end of the experiment, the rats were decapitated under xylazine and ketamine anesthesia and their testicles were removed. The sections obtained from the testicles were stained with Hematoxylin & Eosin and histopathological damage was evaluated. The TUNEL method was applied to determine apoptotic cells. Testosterone levels were measured in the blood serum. The Johnsen testicular biopsy score (JTBS) was used to evaluate testicular tubules. DNA damage was evaluated in sperm samples taken from the ductus epididymis using the comet assay technique. RESULTS: Testicular tissue was severely damaged in the paclitaxel group. In the curcumin + paclitaxel group, it was determined that the administration of curcumin with paclitaxel reduced the histological damage in the testicular tissue. Moreover, according to the JTBS, the value was significantly higher in the testicular tubules (p < 0.05). Testosterone levels were higher in curcumin + paclitaxel group than in paclitaxel group. DNA damage also decreased significantly in curcumin + paclitaxel group when compared to paclitaxel group (p < 0.05). DISCUSSION: The results showed that curcumin may be protective against damage caused by paclitaxel in the testicles of rats.


Subject(s)
Cuminum , Curcumin , Rats , Male , Animals , Testis , Antioxidants/pharmacology , Curcumin/pharmacology , Cuminum/metabolism , Rats, Wistar , Paclitaxel/metabolism , Paclitaxel/pharmacology , Oxidative Stress , Seeds/metabolism , DNA Damage , Testosterone
8.
Biotech Histochem ; 97(8): 622-634, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35989671

ABSTRACT

Doxorubicin (DOX) is used as an anticancer drug despite its many side effects. Thymoquinone (THQ) is a plant-derived substance that exhibits antioxidant and anti-inflammatory properties. We investigated the protective effects of THQ on DOX induced nephrotoxicity in rats. Rats were divided into five groups of eight: group 1, untreated control; group 2, olive oil group given olive oil intraperitoneally (i.p.) for 14 days; group 3, THQ group given 10 mg/kg THQ i.p. for 14 days; group 4, DOX group given a single dose of 15 mg/kg DOX i.p. on day 7 of experiment; group 5, DOX + THQ given 10 mg/kg THQ i.p. for 14 days and 15 mg/kg DOX i.p. on day 7. Kidney tissues were evaluated for histopathology. Caspase-3, IL-17, GRP78 and TNF-α immunostaining was used to determine the expression levels of these proteins among the groups. The TUNEL method was used to determine the apoptotic index. Total antioxidant status (TAS), total oxidant status (TOS), and TNF-α and TGF-ß1 levels in kidney tissue were measured using ELISA assay. Histopathologic damage, caspase-3, IL-17, GRP78 and TNF-α immunoreactivity, TUNEL positive cells, TOS, TNF-α and TGF-ß1 levels were increased in group 4 compared to group 1. The TAS of group 4 decreased compared to group 1. We found decreased caspase-3, IL-17, GRP78 and TNF-α expressions and TUNEL positive cells in group 5 compared to group 4. In rats given DOX, THQ reduced kidney damage by suppressing endoplasmic reticulum stress, inflammation and apoptosis pathways.


Subject(s)
Acute Kidney Injury , Endoplasmic Reticulum Stress , Rats , Animals , Caspase 3/metabolism , Transforming Growth Factor beta1/metabolism , Interleukin-17/metabolism , Interleukin-17/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Olive Oil/pharmacology , Doxorubicin/toxicity , Apoptosis , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Acute Kidney Injury/chemically induced , Oxidants , Oxidative Stress
9.
Clin Exp Pharmacol Physiol ; 49(8): 813-823, 2022 08.
Article in English | MEDLINE | ID: mdl-35579513

ABSTRACT

Chronic hypoxia negatively affects male fertility by causing pathological changes in male reproductive system. However, underlying mechanisms of this damage are unknown. Chloroquine (CLQ) is an anti-inflammatory agent that is widely used in the treatment of inflammation-related diseases such as malaria and rheumatoid arthritis. This study aimed to investigate the therapeutic effects of CLQ in the hypoxia-induced testicular damage via assessment of hypoxic response, endoplasmic reticulum stress and apoptosis. For this purpose, 32 Wistar albino rats were divided into 4 groups as control (given 20%-21% O2 , no treatment), CLQ (given 50 mg/kg and 20%-21% O2 for 28 days), hypoxia (HX) (given 10% O2 for 28 days) and HX + CLQ (given 50 mg/kg and 10% O2 for 28 days). After the experiment, blood samples and testicular tissues were taken. Histopathological evaluation was performed on testicular tissues and hypoxia-inducible factor 1-α (HIF1-α), heat shock proteins (HSPs) HSP70, HSP90 and growth arrest and DNA damage-inducible gene 153 (GADD153) expression levels were detected via immunohistochemistry. Moreover, apoptotic cells were detected via terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining and serum testosterone levels were determined by enzyme-linked immunosorbent assay (ELISA) assay. Histopathological changes, apoptotic cell numbers and HIF1-α, HSP70, HSP90 and GADD153 expressions significantly increased in HX group (P < .05). Moreover, serum testosterone levels decreased in this group (P > .05). However, CLQ exerted a strong ameliorative effect on all parameters in HX + CLQ group. According to our results, we suggested that CLQ can be considered as an alternative protective agent for eliminating the negative effects of hypoxic conditions on male fertility.


Subject(s)
Chloroquine , Endoplasmic Reticulum Stress , Animals , Apoptosis , Chloroquine/pharmacology , Hypoxia/complications , Hypoxia/drug therapy , Male , Rats , Rats, Wistar , Testosterone/pharmacology
10.
Arch Gynecol Obstet ; 306(5): 1673-1678, 2022 11.
Article in English | MEDLINE | ID: mdl-35357583

ABSTRACT

PURPOSE: This study was aimed to evaluate the protective effect of edaravone on cisplatin-induced ovarian injury. METHODS: A total 40 female Wistar-Albino rats were utilized to form four groups: Group 1 (control group) (n = 10), no procedure was performed. Group 2 (cisplatin group) (n = 10), single-dose 7.5 mg/kg cisplatin was administered and no procedure was performed. Group 3 (edaravone group) (n = 10), single-dose 1 mg/kg edaravone was administered and no procedure was performed. Group 4 (cisplatin + edaravone group) (n = 10), single-dose 7.5 mg/kg cisplatin and 1 mg/kg edaravone were administered. Seventy-two hours later, ovaries were surgically extirpated in all groups. Malondialdehyde (MDA) levels and nitric oxide (NO) levels were studied in blood samples. In ovarian tissue samples, DNA damage and apoptosis were assessed using TUNEL method. Ovarian tissue damage was evaluated by immunohistochemical staining with caspase 3 and caspase 8. RESULTS: According to the findings obtained from the study, edaravone showed protective properties on ovarian damage due to cisplatin. MDA and NO levels were significantly higher in cisplatin group than other groups. Histopathological ovarian tissue damage in the cisplatin group was significantly higher than other groups. Similarly, DNA damage and apoptosis were higher in cisplatin group and this difference was found to be statistically significant. The immunohistochemical staining which was done using caspase 3 and caspase 8 was revealed that immunoreactive cells were statistically higher in cisplatin group than cisplatin + edaravone group. CONCLUSION: Edaravone seems to be effective in prevention of ovarian damage and short-term treatment.


Subject(s)
Antipyrine , Cisplatin , Edaravone , Animals , Antipyrine/pharmacology , Antipyrine/therapeutic use , Apoptosis , Caspase 3 , Caspase 8/pharmacology , Cisplatin/adverse effects , Edaravone/pharmacology , Female , Malondialdehyde , Nitric Oxide , Ovary/pathology , Rats , Rats, Wistar
11.
Biotech Histochem ; 97(4): 290-297, 2022 May.
Article in English | MEDLINE | ID: mdl-34365888

ABSTRACT

Methotrexate (MTX) is an anti-neoplastic drug that also causes testicular damage. Vitamin B12 (Vit B12) is a water soluble vitamin that is required for normal metabolism. We investigated Vit B12 as a possible protective agent against testicular damage caused by MTX treatment. We divided rats into four groups: control group, Vit B12 group treated with Vit B12 daily for 15 days, MTX group treated with MTX on day 8, MTX + Vit B12 group treated with MTX on day 8 + Vit B12 for 15 days. Serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were measured. We also measured proliferating cell nuclear antigen (PCNA), connexin43 (Cx43) and the growth arrest- and DNA damage-inducible gene, 153 (GADD153), using immunohistochemical staining. Apoptosis was assessed using TUNEL staining. The MTX group exhibited degeneration of seminiferous tubules; decreased serum testosterone, LH and FSH levels; fewer PCNA positive cells; increased Cx43 expression; and increased GADD153 and TUNEL stained cells compared to the control group. These pathologic findings were substantially reversed In the MTX + Vit B12 group. MTX caused increased endoplasmic reticulum stress and apoptosis via GADD153. Consequently, Vit B12 potentially is a protective agent against damage caused by MTX.


Subject(s)
Methotrexate , Testis , Animals , Apoptosis , Male , Methotrexate/toxicity , Rats , Rats, Wistar , Testis/pathology , Vitamin B 12/metabolism , Vitamin B 12/therapeutic use
12.
Am J Stem Cells ; 11(5): 64-78, 2022.
Article in English | MEDLINE | ID: mdl-36660741

ABSTRACT

OBJECTIVES: This study aimed to investigate the effect of TGF-B1-transfected adipose-derived mesenchymal stem cell (AD-MSC) conditional medium (TGF-B1-CM) on CD44 expression and biological activities in MCF-7 and MDA-MB-231 cells. METHODS: In the study, the experimental groups were created as a standard medium, AD-MSC-CM, TGF-B1-CM, and TGF-B1 recombinant protein. The medium and proteins specified in these groups were applied to MCF-7 and MDA-MB-231 cells separately at 24, 48 and 72 hours. Western blot and immunofluorescent staining were performed with antibodies suitable for CD44 and canonical smad signaling pathway analyses between groups. Cellular proliferation in MCF-7 and MDA-MB-231 cells was measured by MTT. Biological activity analyses such as apoptosis, cell cycle, proliferation, DNA damage, and membrane depolarization between groups were tested on the Muse Cell Analyzer using appropriate kits. Cellular migration between groups was determined by showing cells that migrated to the scar area with in vitro scar formation. Statistics were performed with GraphPad Prism 8.02 software. RESULTS: It was determined that TGF-B1-CM activates the smad signaling pathway in MCF-7 and MDA-MB-231 cells. TGF-B1-CM increased pSMAD2/3 expression and decreased SMAD4 expression in breast cancer cells. A decrease in CD44 expression was found at points of increase in pSMAD2/3 expression. Decreased expression of SMAD4 in breast cancer cells with TGF-B1-CM was associated with decreased expression of CD44. In MCF-7 and MDA-MB-231 cells, TGF-B1-CM was found to increase apoptosis, decrease proliferation, disrupt membrane depolarization, and arrest cells at G0/G1 stage. TGF-B1-CM suppressed MCF-7 and MDA-MB-231 migrations. CONCLUSION: SMAD4-targeted therapeutic strategies may be considered to suppress CD44 expression in breast cancer cells. Both the anti-tumorigenic factors released by AD-MSCs and the secretomes obtained as a result of supporting these factors with the overexpression of TGF-B1, severely suppressed breast cancer cells. With this study, it was planned to obtain a targeted biological product that suppresses breast cancer cells in vitro.

13.
J Biochem Mol Toxicol ; 35(12): e22918, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34541741

ABSTRACT

The neuronal system that controls respiration creates plasticity in response to physiological changes. Chronic sustained hypoxia causes neuroplasticity that contributes to ventilatory acclimatization to hypoxia (VAH). The purpose of this study is to explain the potential roles of the VAH mechanism developing because of chronic sustained hypoxia on respiratory neuroplasticity of vascular endothelial growth factor (VEGF) receptor activation on the nucleus tractus solitarius (NTS) and phrenic nerve. In this study 24 adult male Sprague-Dawley rats were used. Subjects were separated into four groups, a moderate-sham (mSHAM), severed-sham (sSHAM), moderate chronic sustained hypoxia (mCSH), and severed chronic sustained hypoxia (sCSH). Normoxic group (mSHAM and sSHAM) rats were exposed to 21% O2 level (7 days) in the normobaric room while hypoxia group (mCSH and sCSH) rats were exposed to 13% and 10% O2 level (7 days). Different protocols were applied for normoxic and hypoxia groups and ventilation, respiratory frequency, and tidal volume measurements were made with whole-body plethysmography. After the test HIF-1α, erythropoietin (EPO), and VEGFR-2 expressions on the NTS region in the medulla oblongata and phrenic nerve motor neurons in spinal cord tissue were analyzed using the immunohistochemical stain method. Examinations on the medulla oblongata and spinal cord tissues revealed that HIF-1α, EPO, and VEGFR-2 expressions increased in hypoxia groups compared to normoxic groups while a similar increase was also seen when respiratory parameters were assessed. Consequently, learning about VAH-related neuroplasticity mechanisms developed as a result of chronic continuous hypoxia will contribute to developing new therapeutical approaches to various diseases causing respiratory failure using brain plasticity without recourse to medicines.


Subject(s)
Hypoxia/physiopathology , Neuronal Plasticity/physiology , Phrenic Nerve/physiopathology , Receptors, Vascular Endothelial Growth Factor/physiology , Solitary Nucleus/physiopathology , Animals , Chronic Disease , Male , Rats , Rats, Sprague-Dawley , Respiration
14.
Anat Histol Embryol ; 50(6): 908-917, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34494664

ABSTRACT

Cancer is a lethal disease that is characterized by uncontrolled cell division and proliferation, and it results in death in many organisms. Doxorubicin (DOX) is a therapeutic agent used for treatment of many cancer types, but it induces serious hepatotoxicity. In this study, we aimed to determine possible hepato-therapeutic effects of thymoquinone (THQ) on DOX-induced hepatotoxicity in rats. Rats were divided into five groups (n = 8): Control, THQ (10 mg/kg/day/i.p for 14 days), Olive Oil (equal volume with THQ for 14 days), DOX (single dose, 15 mg/kg/i.p on 7th day) and DOX + THQ (10 mg/kg/day/i.p and DOX 15 mg/kg/i.p on 7th day). At the end of the experiment, liver tissues were extracted and evaluated histopathologically. eNOS, iNOS and Cas-3 immunostaining were performed to determine the expression levels. TUNEL method was used to determine apoptotic index. Furthermore, liver tissue total antioxidant status (TAS), total oxidant status (TOS), TNF-α and TGF-ß levels were measured by ELISA assay. The DOX group showed histopathological deterioration compared to Control group. Moreover, apoptotic index, eNOS, iNOS and Cas-3 expressions increased in DOX group. While TAS level of the DOX group decreased, TOS level increased. TNF-α and TGF-ß levels increased in DOX group. However, there was improvement in DOX + THQ group compared to DOX group. Moreover, apoptotic cell number, eNOS, iNOS and Cas-3 expressions decreased in DOX + THQ group compared to DOX group. We concluded that thymoquinone can be used as a phytotherapeutic for reducing DOX-induced liver damage.


Subject(s)
Chemical and Drug Induced Liver Injury , Rodent Diseases , Animals , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Apoptosis , Benzoquinones , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/veterinary , Doxorubicin/toxicity , Inflammation/drug therapy , Inflammation/veterinary , Oxidative Stress , Rats
15.
J Biochem Mol Toxicol ; 35(11): e22888, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34392583

ABSTRACT

Although doxorubicin (DOX) is used in many cancer treatments, it causes neurotoxicity. In this study, the effect of thymoquinone (THQ), a powerful antioxidant, on DOX-induced neurotoxicity was evaluated. In total, 40 rats were used and 5 groups were formed. Group I: control group (n = 8); Group II: olive oil group (n = 8); Group III: the THQ group (n = 8); THQ 10 mg/kg per day was given intraperitoneally (i.p.) throughout the experiment; group IV: DOX group (n = 8); On Day 7 of the experiment, a single dose of 15 mg/kg intraperitoneally DOX injected; group V: DOX + THQ group (n = 8); Throughout the experiment, 10 mg/kg THQ per day and intraperitoneally 15 mg/kg DOX on Day 7 were injected. Immunohistochemically, tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hypoxia-inducible factor 1α (HIF1-α), glucose regulatory protein 78 (GRP78), and the gene inducible by growth arrest and DNA damage 153 (GADD153) proteins were evaluated in the brain cortex, medulla, and hippocampus regions. Total oxidant status (TOS) levels and total antioxidant status (TAS) in the brain tissue were measured. TNF-α, IL-17, HIF1-α, GRP78, and GADD153 immunoreactivities significantly increased in the DOX group in the study. THQ significantly reduced these values. THQ increased the TAS level significantly and decreased the TOS level significantly compared to the DOX group. THQ may play a role as a neuroprotective agent in DOX-induced neurotoxicity in the cortex, medulla, and hippocampus regions of the brain.


Subject(s)
Benzoquinones/pharmacology , Cerebral Cortex/drug effects , Doxorubicin/toxicity , Endoplasmic Reticulum Stress/drug effects , Hippocampus/drug effects , Inflammation/prevention & control , Medulla Oblongata/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Antibiotics, Antineoplastic/toxicity , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Hippocampus/metabolism , Hippocampus/pathology , Medulla Oblongata/metabolism , Medulla Oblongata/pathology , Rats , Rats, Wistar
16.
Iran J Basic Med Sci ; 24(2): 184-190, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33953857

ABSTRACT

OBJECTIVES: Carbon tetrachloride (CCL4) toxicity triggers fibrosis, activating various mechanisms within the cell. We aimed to create damage with CCL4 and investigate the effectiveness of L-carnitine on the mechanisms we identified. MATERIALS AND METHODS: Forty rats were divided into 5 groups with equal number of rats in each group. Group I: Control group, Group II: L-carnitine group, 200 mg/kg L-carnitine twice a week, Group III: CCL4 group, 0.2 ml/100 gr CCL4, IP, dissolved in olive oil 2 times a week during 6 weeks; Group IV: L-carnitine + CCL4 group, 200 mg/kg L-carnitine 24 hr before 0.2 ml/100 g CCL4 application twice a week; Group V: CCL4 + L-carnitine, 200 mg/kg L-carnitine half an hour after 0.2 ml/100 g CCL4 application. The liver was evaluated histologically. Immunohistochemically stained with α-SMA, iNOS, HSP90, HIF-1α, and RIP1. TNF-α, TGF-ß, AST, ALT, ALP, and GGT measurements were evaluated. RESULTS: In the classical lobule periphery, an increase in lipid accumulation and a decrease in glycogen accumulation were observed. After immunohistochemical measurements and biochemical analyzes, an increase in the expression density of all proteins was observed in group III. In group IV and V, an improvement in tissue and a decrease in protein expression densities were observed. CONCLUSION: iNOS serves as a free radical scavenger in response to damage caused by increased toxicity of α-SMA, HSP90, and HIF-1α. Especially, increased RIP1 level in the tissue indicates the presence of necrosis in the tissue after CCL4-toxicity. Supplementing the amount of endogenous L-carnitine with supplementation provides a significant improvement in the tissue.

17.
J Chem Neuroanat ; 114: 101958, 2021 07.
Article in English | MEDLINE | ID: mdl-33864937

ABSTRACT

OBJECTIVE: We aimed to investigate the effects of umbilical cord-derived mesenchymal stem cells and erythropoietin on nerve regeneration in the sciatic nerve 'crush injury' in a rat model. METHODS: Experimental animals were randomly divided into 5 groups: Crush Injury, Sham, Crush Injury + Erythropoietin, Crush Injury + Mesenchymal Stem Cell, Crush Injury + Erythropoietin + Mesenchymal Stem Cell groups. Crush injury made with bulldog clamp. Mesencyhmal stem cells delivered by enjection locally. Erythropoietin administered by intraperitoneally. On the 0th, 14th and 28th days, all groups underwent a sciatic functional index test. On 28th day, sciatic nerves were harvested and histopathological appearance, axon number and axon diameter of the sciatic nerves were evaluated with Oil Red O staining. Immunoreactivity of nerve growth factor, neurofilament-H and caspase-3 were determined by immunofluorescence staining in nerve tissue. RESULTS: In histopathological examination, axons and nerve bundles exhibiting normal nerve architecture in the Sham group. Crush Injury + Mesenchymal Stem Cell group has similar histological appearance to the Sham group. The number of axons were higher in the Mesenchymal Stem Cell groups compared to the Crush Injury group. Nerve growth factor immunoreactivity intensity was significantly lower in Crush Injury + Mesenchymal Stem Cell group compared to Crush Injury group. Neurofilament-H density was higher in the treatment groups when compared to the Crush Injury group. CONCLUSIONS: In this study, it was found that umbilical cord-derived mesenchymal stem cells and erythropoietin treatments effects positively regeneration of crush injury caused by bulldog clamp in the sciatic nerve of rats.


Subject(s)
Erythropoietin/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Peripheral Nerve Injuries , Animals , Cord Blood Stem Cell Transplantation/methods , Crush Injuries , Female , Random Allocation , Rats , Rats, Wistar , Sciatic Nerve/drug effects , Sciatic Nerve/injuries
18.
Int. j. morphol ; 39(2): 612-618, abr. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1385340

ABSTRACT

SUMMARY: The aim of this study is to determine the potential therapeutic effects of CAPE in CP-induced nephrotoxicity in rats. Cisplatin (CP) is an antineoplastic chemotherapeutic used for treatment of many cancer types but its applications may induce nephrotoxicity. Caffeic acid phenethyl ester (CAPE) is an active component of propolis and it has several important physiological activities. Rats were divided into four groups: Control, CAPE (10 µmol/kg/i.p), CP (7 mg/kg/i.p), and CP+CAPE (7 mg/kg/i.p, CP and 10 µmol/kg/i.p, CAPE). After administrations, animals were sacrificed, and kidney tissues were extracted. Histopathological changes were evaluated and TNF-α and IL-6 immunostaining were performed. Moreover, tissue SOD, CAT and MDA levels were measured by ELISA assay to assessment of oxidative stress and lipid peroxidation. CP group showed histopathological deterioration compared to the Control group and CAPE treatment attenuated this damage. When compared with Control and CAPE group, an increase in TNF-α and IL-6 immunoreactivities and tissue MDA levels were observed in the CP group while a decrease in tissue SOD and CAT levels were detected. Furthermore, an improvement was observed in the CP+CAPE compared to the CP group. We suggest that CAPE can be used as a therapeutic agent to attenuate the toxic effects of cisplatin, thanks to its antioxidant and anti-inflammatory properties.


RESUMEN: El objetivo de este estudio fue determinar los posibles efectos terapéuticos de éster fenetílico del ácido cafeico (EFAC) en la nefrotoxicidad inducida por cisplatino (CP) en ratas. El CP es un quimioterapéutico antineoplásico utilizado para el tratamiento de muchos tipos de cáncer, sin embargo sus aplicaciones pueden inducir nefrotoxicidad. El EFAC es un componente activo del propóleo y tiene varias actividades fisiológicas importantes. Para el estudio las ratas se dividieron en cuatro grupos: Control, EFAC (10 µmol / kg / ip), CP (7 mg / kg / ip) y CP + EFAC (7 mg / kg / ip, CP y 10 µmol / kg / ip, EFAC). Después de las administraciones, se sacrificaron los animales y se extrajeron los tejidos renales. Se evaluaron los cambios histopatológicos y se realizó inmunotinción de TNF-α e IL-6. Además, los niveles tisulares de SOD, CAT y MDA se midieron mediante un ensayo ELISA para evaluar el estrés oxidativo y la peroxidación lipídica. El grupo CP mostró deterioro histopatológico en comparación con el grupo Control y el tratamiento con EFAC atenuó este daño. En comparación con el grupo de control y EFAC, se observó un aumento en las inmunorreactividades de TNF-α e IL-6 y los niveles de MDA en el tejido en el grupo de CP, mientras que se detectó una disminución en los niveles de SOD y CAT en los tejidos. Además, se observó una mejora en el CP + EFAC en comparación con el grupo CP. Sugerimos que EFAC puede utilizarse como agente terapéutico para atenuar los efectos tóxicos del cisplatino, gracias a sus propiedades antioxidantes y antiinflamatorias.


Subject(s)
Animals , Male , Rats , Phenylethyl Alcohol/analogs & derivatives , Caffeic Acids/pharmacology , Cisplatin/toxicity , Kidney/drug effects , Phenylethyl Alcohol/pharmacology , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Rats, Wistar , Oxidative Stress/drug effects , Inflammation , Antineoplastic Agents/toxicity
19.
Int. j. morphol ; 39(2)abr. 2021. 659 666
Article in English | LILACS | ID: biblio-1385365

ABSTRACT

SUMMARY: The aim of this study was to determine the relationship of autophagy-enhancing rapamycin (RAPA) and autophagy- inhibitor 3-methyladenine (3-MA) with Nitric oxide synthases (NOS) in Cisplatin (CIS)-induced neurotoxicity in rats. Rats were divided into 4 groups (n=10): Control was applied saline, CIS (a single dose of 8mg/kg intraperitoneal (i.p.) on 7th day of experiment), RAPA+CIS (2 mg/kg/i.p. RAPA per day and 8 mg/kg/i.p. CIS on 7th day), 3-MA+CIS (15 mg/kg/i.p. 3-MA per day and 8 mg/kg/i.p. CIS on 7th day). Rats were sacrificed under anesthesia. Brain tissues were evaluated histopathologically. eNOS, Inos, nNOS and MAP 2 immunostaining were performed to determine the expression levels of these proteins among groups. Superoxide dismutase (SOD), Catalase (CAT), Malondialdehyde (MDA) and Interleukin IL-6 levels in brain tissue and serum nitric oxide (NO) level were measured by ELISA assay. In histopathological evaluation, neurodegeneration was seen in the CIS group. There was an increase in eNOS, iNOS and nNOS immunostaining in CIS group. While MAP2 immunostaining of the CIS group decreased. There was a decrease in SOD and CAT levels of brain tissue in CIS group. However, there was an increase in MDA, IL-6 and NO levels of brain tissue in CIS group. We found that antioxidant capacity increase while, inflammation and nitric oxide levels decreased in the RAPA-treated group. 3-MA does not have a significant effect. We suggest that CIS-induced neurotoxicity is more effective than Rapa 3-MA and may also be linked to NOS enzymes.


RESUMEN: El objetivo de este estudio fue determinar la relación de la rapamicina potenciadora de la autofagia (RAPA) y el inhibidor de la autofagia 3-metiladenina (3-MA) con óxido nítrico sintasas (NOS) en la neurotoxicidad inducida por cisplatino (CIS) en ratas. Las ratas se dividieron en 4 grupos (n = 10): grupo control se aplicó solución salina, CIS (una dosis única de 8 mg / kg intraperitoneal (ip) el día 7 del experimento), RAPA + CIS (2 mg / kg / ipRAPA por día y 8 mg / kg / ip CIS el día 7), 3-MA + CIS (15 mg / kg / ip 3-MA por día y 8 mg / kg / ip CIS el día 7). Las ratas se sacrificaron bajo anestesia y los tejidos cerebrales fueron analizados histopatológicamente. Se realizaron inmunotinciones con eNOS, Inos, nNOS y MAP 2 para determinar los niveles de expre- sión de estas proteínas entre los grupos. Se midieron los niveles de superóxido dismutasa (SOD), catalasa (CAT), malondialdehído (MDA) e interleucina IL-6 en el tejido cerebral y el nivel de óxido nítrico (NO) en suero mediante ensayo ELISA. En la evaluación histopatológica, se observó neurodegeneración en el grupo CIS. Hubo un aumento en la inmunotinción de eNOS, iNOS y nNOS en el grupo CIS. Mientras que la inmunotinción de MAP2 del grupo CIS disminuyó. Hubo una disminución en los niveles de SOD y CAT del tejido cerebral en el grupo CIS, sin embargo, hubo un aumento en los niveles de MDA, IL-6 y NO en el tejido cerebral en el grupo CIS. Observamos que la capacidad antioxidante aumentó, mientras que la inflamación y los niveles de óxido nítrico disminuyeron en el grupo tratado con RAPA. 3-MA no tiene un efecto significativo. Sugerimos que la neurotoxicidad inducida por CIS es más eficaz que Rapa 3-MA y también puede estar relacio- nada con las enzimas NOS.


Subject(s)
Animals , Male , Rats , Adenine/analogs & derivatives , Cisplatin/toxicity , Nitric Oxide Synthase/drug effects , Sirolimus/pharmacology , Neurotoxicity Syndromes , Superoxide Dismutase , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Adenine/pharmacology , Catalase , Interleukin-6 , Rats, Wistar , Malondialdehyde , Antineoplastic Agents/toxicity
20.
J Biochem Mol Toxicol ; 35(2): e22636, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32956540

ABSTRACT

Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a constant high pulmonary artery pressure and the remodeling of the vessel. Chloroquine (CLQ) has been observed to inhibit calcium influx. The aim of this study is to investigate the effect of CLQ on transient receptor cationic proteins (TRPC1 and TRPC6) and extracellular calcium-sensitive receptor (CaSR) in a hypoxic PAH model. In this study, 8- to 12-week-old 32 male Wistar albino rats, weighing 200 to 300 g, were used. The rats were studied in four groups, including normoxy control, n = 8; normoxy CLQ (50 mg/kg/28 d), n = 8; hypoxia (HX; 10% oxygen/28 d) control, n = 8; and HX (10% oxygen/28 d) + CLQ (50 mg/kg), N = 8. Pulmonary arterial medial wall thickness, pulmonary arteriole wall, TRPC1, TRPC6, and CaSR expressions were evaluated by immunohistochemistry, polymerase chain reaction, and enzyme-linked immunosorbent assay methods. At the end of the experiment, a statistically significant increase in the medial wall thickness was observed in the hypoxic group as compared with the control group. However, in the HX + CLQ group, there was a statistically significant decrease in the vessel medial wall as compared with the HX group. In the TRPC1-, TRPC6-, and CaSR-immunopositive cell numbers, messenger RNA expressions and biochemical results showed an increase in the HX group, whereas they were decreased in the HX + CLQ group. The inhibitory effect of CLQ on calcium receptors in arterioles was observed in PAH.


Subject(s)
Chloroquine/pharmacology , Hypoxia/complications , Muscle, Smooth, Vascular/drug effects , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/drug effects , Receptors, Calcium-Sensing/metabolism , TRPC Cation Channels/metabolism , Animals , Arterioles/metabolism , Body Weight/drug effects , Cell Line , Disease Models, Animal , Lung/drug effects , Lung/metabolism , Male , Muscle, Smooth, Vascular/metabolism , Organ Size/drug effects , Pulmonary Arterial Hypertension/etiology , Pulmonary Artery/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL