Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(5): 056002, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364146

ABSTRACT

We investigated the high energy spin excitations in electron-doped La_{2-x}Ce_{x}CuO_{4}, a cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS spectrum at Q_{∥}=(0.6π,0) and (0.9π,0) along the (1 0) direction. Our results show that, for doping level x from 0.07 to 0.185, the variation of the paramagnon excitation energy is marginal. We discuss the implication of our results in connection with the evolution of the electron correlation strength in this system.

2.
Nat Commun ; 13(1): 570, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35091572

ABSTRACT

Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl2Ba2CuO6+δ (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of pCDW ≈ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below pCDW. Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates.

3.
Proc Natl Acad Sci U S A ; 114(47): 12430-12435, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29114049

ABSTRACT

Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.

4.
Sci Rep ; 6: 36307, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796347

ABSTRACT

The magnetisation dynamics of the vortex core and Landau pattern of magnetic thin-film elements has been studied using holography with extended reference autocorrelation by linear differential operator (HERALDO). Here we present the first time-resolved x-ray measurements using this technique and investigate the structure and dynamics of the domain walls after excitation with nanosecond pulsed magnetic fields. It is shown that the average magnetisation of the domain walls has a perpendicular component that can change dynamically depending on the parameters of the pulsed excitation. In particular, we demonstrate the formation of wave bullet-like excitations, which are generated in the domain walls and can propagate inside them during the cyclic motion of the vortex core. Based on numerical simulations we also show that, besides the core, there are four singularities formed at the corners of the pattern. The polarisation of these singularities has a direct relation to the vortex core, and can be switched dynamically by the wave bullets excited with a magnetic pulse of specific parameters. The subsequent dynamics of the Landau pattern is dependent on the particular configuration of the polarisations of the core and the singularities.

5.
J Synchrotron Radiat ; 23(2): 464-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26917134

ABSTRACT

A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.

6.
Nat Mater ; 12(11): 1019-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23913170

ABSTRACT

One of the most intensely studied scenarios of high-temperature superconductivity (HTS) postulates pairing by exchange of magnetic excitations. Indeed, such excitations have been observed up to optimal doping in the cuprates. In the heavily overdoped regime, neutron scattering measurements indicate that magnetic excitations have effectively disappeared, and this has been argued to cause the demise of HTS with overdoping. Here we use resonant inelastic X-ray scattering, which is sensitive to complementary parts of reciprocal space, to measure the evolution of the magnetic excitations in La(2-x)Sr(x)CuO4 across the entire phase diagram, from a strongly correlated insulator (x = 0) to a non-superconducting metal (x = 0.40). For x = 0, well-defined magnon excitations are observed. These magnons broaden with doping, but they persist with a similar dispersion and comparable intensity all the way to the non-superconducting, heavily overdoped metallic phase. The destruction of HTS with overdoping is therefore caused neither by the general disappearance nor by the overall softening of magnetic excitations. Other factors, such as the redistribution of spectral weight, must be considered.

7.
Rev Sci Instrum ; 84(3): 035105, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23556850

ABSTRACT

Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

SELECTION OF CITATIONS
SEARCH DETAIL
...