Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Curr Radiopharm ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693733

ABSTRACT

OBJECTIVE: Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed in vivo, making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically compatible 3D tissue cultures to assess the effects of ionizing radiation. METHODS: Organotypic tissue slices were obtained by vibratome, and their mechanical properties were studied. Slices were exposed by two ionizing radiation sources; electron beams (80 Gy and 4 Gy), and soft gamma irradiation (80 Gy and 4 Gy). Two tissue culture protocols were used: the standard (37°C), and hypothermic (30°C) conditions. A qualitative analysis of cell viability in organotypic tissue slices was performed using fluorescent dyes and standard laser confocal microscopy. RESULTS: Biological dosimetry is represented by differentially stained 200-µm thick organotypic tissue sections related to living and dead cells and cell metabolic activity. CONCLUSION: Our results underscore the ability of fluorescence laser scanning confocal microscopy to rapidly assess the radiobiological effects of ionizing radiation in vitro on 3D organotypic tissue slices.

2.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069106

ABSTRACT

Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.


Subject(s)
Chondrocytes , Trachea , Animals , Rabbits , Humans , Chondrocytes/transplantation , Trachea/metabolism , Tissue Scaffolds , Cartilage/transplantation , Tissue Engineering/methods , Collagen/metabolism , Inflammation/metabolism
3.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003439

ABSTRACT

Treatment of a wide variety of defects in the oral and maxillofacial regions requires the use of innovative approaches to achieve best outcomes. One of the promising directions is the use of gene-activated materials (GAMs) that represent a combination of tissue engineering and gene therapy. This approach implies that biocompatible materials will be enriched with gene-carrying vectors and implanted into the defect site resulting in transfection of the recipient's cells and secretion of encoded therapeutic protein in situ. GAMs may be presented in various designs depending on the type of material, encoded protein, vector, and way of connecting the vector and the material. Thus, it is possible to choose the most suitable GAM design for the treatment of a particular pathology. The use of plasmids for delivery of therapeutic genes is of particular interest. In the present review, we aimed to delineate the principle of work and various designs of plasmid-based GAMs and to highlight results of experimental and clinical studies devoted to the treatment of periodontitis, jaw bone defects, teeth avulsion, and other pathologies in the oral and maxillofacial regions.


Subject(s)
Biocompatible Materials , Tissue Engineering , Tissue Engineering/methods , Genetic Therapy/methods , Dentistry , Technology
4.
Biomedicines ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36979723

ABSTRACT

This article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation. The PLCL- and PLGA-based flat samples were more prone to hydrolysis within the same period of time, which was confirmed by the increased loss of mass and a significant reduction of weight-average molecular mass. The study of the mechanical properties of developed multi-layered tubular scaffolds revealed that their strength in the longitudinal and transverse directions was comparable with the values measured for a decellularized bile duct. The strength of three-layered scaffolds declined significantly because of the active degradation of the outer layer made of PLGA. The strength of scaffolds with the PLCL outer layer deteriorated much less with time, both in the axial (p-value = 0.0016) and radial (p-value = 0.0022) directions. A novel method for assessment of the physiological relevance of synthetic scaffolds was developed and named the phase space approach for assessment of physiological relevance. Two-dimensional phase space (elongation modulus and tensile strength) was used for the assessment and visualization of the physiological relevance of scaffolds for bile duct bioengineering. In conclusion, the design of scaffolds for the creation of physiologically relevant tissue-engineered bile ducts should be based not only on biodegradation properties but also on the biomechanical time-related behavior of various compositions of polymers and copolymers.

5.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834676

ABSTRACT

Elucidation of the mechanisms for the response of cancer stem cells (CSCs) to radiation exposure is of considerable interest for further improvement of radio- and chemoradiotherapy of cervical cancer (CC). The aim of this work is to evaluate the effects of fractionated radiation exposure on the expression of vimentin, which is one of the end-stage markers of epithelial-mesenchymal transition (EMT), and analyze its association with CSC radiation response and short-term prognosis of CC patients. The level of vimentin expression was determined in HeLa, SiHa cell lines, and scrapings from the cervix of 46 CC patients before treatment and after irradiation at a total dose of 10 Gy using real-time polymerase chain reaction (PCR) assay, flow cytometry, and fluorescence microscopy. The number of CSCs was assessed using flow cytometry. Significant correlations were shown between vimentin expression and postradiation changes in CSC numbers in both cell lines (R = 0.88, p = 0.04 for HeLa and R = 0.91, p = 0.01 for SiHa) and cervical scrapings (R = 0.45, p = 0.008). Associations were found at the level of tendency between postradiation increase in vimentin expression and unfavorable clinical outcome 3-6 months after treatment. The results clarify some of the relationships between EMT, CSCs, and therapeutic resistance that are needed to develop new strategies for cancer treatment.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/physiology , HeLa Cells , Neoplastic Stem Cells/metabolism , Uterine Cervical Neoplasms/metabolism , Vimentin/metabolism
6.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674913

ABSTRACT

Insufficient vascular growth in the area of artificial-material implantation contributes to ischemia, fibrosis, the development of bacterial infections, and tissue necrosis around the graft. The purpose of this study was to evaluate angiogenesis after implantation of polycaprolactone microfiber scaffolds modified by a pCMV-VEGF165-plasmid in rats. Influence of vascularization on scaffold degradation was also examined. We investigated flat microfibrous scaffolds obtained by electrospinning polycaprolactone with incorporation of the pCMV-VEGF-165 plasmid into the microfibers at concentrations of 0.005 ng of plasmid per 1 mg of polycaprolactone (0.005 ng/mg) (LCGroup) and 0.05 ng/mg (HCGroup). The samples were subcutaneously implanted in the interscapular area of rats. On days 7, 16, 33, 46, and 64, the scaffolds were removed, and a histological study with a morphometric evaluation of the density and diameter of the vessels and microfiber diameter was performed. The number of vessels was increased in all groups, as well as the resorption of the scaffold. On day 33, the vascular density in the HCGroup was 42% higher compared to the control group (p = 0.0344). The dose-dependent effect of the pCMV-VEGF165-plasmid was confirmed by enhanced angiogenesis in the HCGroup compared to the LCGroup on day 33 (p-value = 0.0259). We did not find a statistically significant correlation between scaffold degradation rate and vessel growth (the Pearson correlation coefficient was ρ = 0.20, p-value = 0.6134). Functionalization of polycaprolactone by incorporation of the pCMV-VEGF165 plasmid provided improved vascularization within 33 days after implantation, however, vessel growth did not seem to correlate with scaffold degradation rate.


Subject(s)
Tissue Scaffolds , Vascular Endothelial Growth Factor A , Rats , Animals , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Physiologic/genetics , Plasmids/genetics , Tissue Engineering
7.
Stem Cell Investig ; 9: 7, 2022.
Article in English | MEDLINE | ID: mdl-36393919

ABSTRACT

Numerous clinical studies have shown a wide clinical potential of mesenchymal stromal cells (MSCs) application. However, recent experience has accumulated numerous reports of adverse events and side effects associated with MSCs therapy. Furthermore, the strategies and methods of MSCs therapy did not change significantly in recent decades despite the clinical impact and awareness of potential complications. An extended understanding of limitations could lead to a wider clinical implementation of safe cell therapies and avoid harmful approaches. Therefore, our objective was to summarize the possible negative effects observed during MSCs-based therapies. We were also aimed to discuss the risks caused by weaknesses in cell processing, including isolation, culturing, and storage. Cell processing and cell culture could dramatically influence cell population profile, change protein expression and cell differentiation paving the way for future negative effects. Long-term cell culture led to accumulation of chromosomal abnormalities. Overdosed antibiotics in culture media enhanced the risk of mycoplasma contamination. Clinical trials reported thromboembolism and fibrosis as the most common adverse events of MSCs therapy. Their delayed manifestation generally depends on the patient's individual phenotype and requires specific awareness during the clinical trials with obligatory inclusion in the patient' informed consents. Finally we prepared the safety checklist, recommended for clinical specialists before administration or planning of MSCs therapy.

8.
Bioengineering (Basel) ; 9(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421105

ABSTRACT

Transfer of regenerative approaches into clinical practice is limited by strict legal regulation of in vitro expanded cells and risks associated with substantial manipulations. Isolation of cells for the enrichment of bone grafts directly in the Operating Room appears to be a promising solution for the translation of biomedical technologies into clinical practice. These intraoperative approaches could be generally characterized as a joint concept of tissue engineering in situ. Our review covers techniques of intraoperative cell isolation and seeding for the creation of tissue-engineered grafts in situ, that is, directly in the Operating Room. Up-to-date, the clinical use of tissue-engineered grafts created in vitro remains a highly inaccessible option. Fortunately, intraoperative tissue engineering in situ is already available for patients who need advanced treatment modalities.

9.
Cells ; 10(5)2021 05 10.
Article in English | MEDLINE | ID: mdl-34068524

ABSTRACT

Drosophila melanogaster sbr (small bristles) is an orthologue of the Nxf1 (nuclear export factor 1) genes in different Opisthokonta. The known function of Nxf1 genes is the export of various mRNAs from the nucleus to the cytoplasm. The cytoplasmic localization of the SBR protein indicates that the nuclear export function is not the only function of this gene in Drosophila. RNA-binding protein SBR enriches the nucleus and cytoplasm of specific neurons and glial cells. In sbr12 mutant males, the disturbance of medulla boundaries correlates with the defects of photoreceptor axons pathfinding, axon bundle individualization, and developmental neurodegeneration. RNA-binding protein SBR participates in processes allowing axons to reach and identify their targets.


Subject(s)
Drosophila Proteins/metabolism , Optic Lobe, Nonmammalian/metabolism , RNA-Binding Proteins/metabolism , Alleles , Animals , Axons/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Drosophila melanogaster , Female , Male , Mutation , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Phenotype
10.
Cancers (Basel) ; 13(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806538

ABSTRACT

Within aggressive malignancies, there usually are the "hypoxic zones"-poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial-mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.

11.
Cells ; 9(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32268506

ABSTRACT

Cancer stem cells (CSCs) are a great challenge in the fight against cancer because these self-renewing tumorigenic cell fractions are thought to be responsible for metastasis dissemination and cases of tumor recurrence. In comparison with non-stem cancer cells, CSCs are known to be more resistant to chemotherapy, radiotherapy, and immunotherapy. Elucidation of mechanisms and factors that promote the emergence and existence of CSCs and their high resistance to cytotoxic treatments would help to develop effective CSC-targeting therapeutics. The present review is dedicated to the implication of molecular chaperones (protein regulators of polypeptide chain folding) in both the formation/maintenance of the CSC phenotype and cytoprotective machinery allowing CSCs to survive after drug or radiation exposure and evade immune attack. The major cellular chaperones, namely heat shock proteins (HSP90, HSP70, HSP40, HSP27), glucose-regulated proteins (GRP94, GRP78, GRP75), tumor necrosis factor receptor-associated protein 1 (TRAP1), peptidyl-prolyl isomerases, protein disulfide isomerases, calreticulin, and also a transcription heat shock factor 1 (HSF1) initiating HSP gene expression are here considered as determinants of the cancer cell stemness and potential targets for a therapeutic attack on CSCs. Various approaches and agents are discussed that may be used for inhibiting the chaperone-dependent development/manifestations of cancer cell stemness.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Humans
12.
Invert Neurosci ; 16(3): 9, 2016 09.
Article in English | MEDLINE | ID: mdl-27389771

ABSTRACT

The Drosophila gene Dm nxf1 (nuclear export factor 1) previously known as small bristles (sbr) controls nuclear export of various mRNA transcripts. We found that Dm NXF1 is present not only in nucleoplasm or at the nuclear rim but also in the cytoplasm. On the spatiotemporal level, anti-SBR antibodies labeled some neuroblasts and their lineages in the brains of Drosophila larvae. The number of Dm NXF1-rich lineages increased during larval development, but Dm NXF1 expression was not evident in all lineages. In all larval stages, Dm NXF1 concentrated in the midline cells of the ventral nerve cord, which reflects a specific status of those cells. In neurites, Dm NXF1 was present in the form of cytoplasmic granules, which is similar to the behavior of another RNA-binding protein, dFMR. Interestingly, though, the granule expression pattern of Dm NXF1 and dFMR did not always overlap, as some granules stained exclusively for one or the other protein. It suggests the existence of specific mRNA partners for Dm NXF1 in neurites.


Subject(s)
Cytoplasm/metabolism , Drosophila Proteins/metabolism , Ganglia, Invertebrate/metabolism , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cytoplasm/chemistry , Drosophila melanogaster , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...