Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Physiol Biochem ; 214: 108915, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972240

ABSTRACT

Copper (Cu) toxicity in crops is a result of excessive release of Cu into environment. Little is known about mitigation of Cu toxicity through the application of carbon-based nanomaterials including water-soluble fullerene C60 derivatives. Two derivatives of fullerene were examined: polyhydroxylated C60 (fullerenol) and arginine C60 derivative. In order to study the response of Cu-stressed plants (Cucumis sativus L.) to these nanomaterials, metabolomics analysis by gas chromatography-mass spectrometry (GC-MS) was performed. Excess Cu (15 µM) caused substantial increase in xylem sap Cu, retarded dry biomass and leaf chlorosis of hydroponically grown cucumber. In Cu-stressed leaves, metabolomes was disturbed towards suppression metabolism of nitrogen (N) compounds and activation metabolism of hexoses. Also, upregulation of some metabolites involving in antioxidant defense system, such as ascorbic acid, tocopherol and ferulic acid, was occurred in Cu-stressed leaves. Hydroponically added fullerene adducts decreased the xylem sap Cu and alleviated Cu toxicity with effectiveness has been most pronounced for arginine C60 derivative. Metabolic responses of plants subjected to high Cu with fullerene derivatives were opposite to that observed under Cu alone. Fatty acids up-regulation (linolenic acid) and antioxidant molecules (tocopherol) down-regulation might indicate that arginine C60 adduct can alleviate Cu induced oxidative stress. Although fullerenol slightly improved cucumber growth, its effect on metabolic state of Cu-stressed plants was not statistically significant. We suggest that tested fullerene C60 adducts have a potential to prevent Cu toxicity in plants through a mechanism associated with their capability to restrict xylem transport of Cu from roots to shoot, and to maintain antioxidative properties of plants.

2.
Environ Geochem Health ; 46(1): 13, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147148

ABSTRACT

Widespread soil contamination with oil and the toxicity of petroleum hydrocarbons to soil biota make it extremely important to study microbial responses to oil stress. Soil metabolites reflect the main metabolic pathways in the soil microbial community. The examination of changes in the soil metabolic profile and metabolic function is essential for a better understanding of the nature of the pollution and restoration of the disturbed soils. The present study aimed to assess the long-term effect of oil on the ecological state of the soil, evaluate quantitative and qualitative differences in metabolite composition between soil contaminated with oil and non-contaminated soil, and reveal biologically active metabolites that are related to oil contamination and can be used for contamination assessment. A long-term field experiment was conducted to examine the effects of various oil concentrations on the biochemical properties and metabolic profile of the soil. Podzolic soil contaminated with oil demonstrated the long-term inhibition of soil biological activity and vegetation. Oil affected the metabolic activity of soil fungi increasing the production of toxic metabolites. A metabolomic approach was employed to determine soil metabolites. The metabolite profile was found to vary greatly between oil-contaminated and non-contaminated soils. Carbohydrates had the largest number of metabolites negatively affected by oil, while the content of organic acids, phenolic compounds, and terpenoids was mainly increased in oil-contaminated soil. The evaluation of the long-term impact of oil on microbial metabolism can make a valuable contribution to the assessment of soil quality and the activity of soil microorganisms being under stress from oil pollution. The results contribute to a further understanding of the role of microorganisms in the ecological functions of contaminated soil, which can be useful in the development of rehabilitation strategies for disturbed sites.


Subject(s)
Medicine , Microbiota , Metabolomics , Environmental Pollution , Soil
3.
Plant Physiol Biochem ; 204: 108095, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866064

ABSTRACT

Copper (Cu), when in excess, is one of the most toxic and hazardous metals to all living organisms, including plants. Engineered nanomaterials have the potential for increasing crop protection. However, the protective role of fullerenes (carbon-based nanoparticles with wide application in various areas) against Cu toxicity in plants is, so far, understudied. The present study investigated whether fullerenes can potentially alleviate Cu toxicity in plants (Cucumis sativus L.). Two water-soluble fullerene C60 derivatives were examined: fullerenol [C60(OH)22-24] and arginine-functionalized fullerene [C60(C6H13N4O2)8H8], under controlled conditions using hydroponics. Plants treated with 15 µM of Cu exhibited typical symptoms of Cu toxicity: impaired growth, leaf chlorosis, reduced photosynthetic activity, nutritional imbalances, and enhanced lipid peroxidation. These symptoms were alleviated in the presence of fullerene derivatives with arginine C60 having the more pronounced effect. Improved cucumber Cu tolerance was attributable to Cu buffering in the root zone (roots and medium), which caused a dramatic decline in Cu transport towards leaves and the elimination of oxidative damage. The Cu removal efficacy of arginine C60 was much greater than that of fullerenol. These fullerenes acted in a dose-dependent manner and removed Cu selectively without significant modification of the bioavailability of other essential nutrients. Treatment with free arginine did not affect Cu immobilization or Cu toxicity. These results suggest that the surface chemistry of the fullerene core is important for the protection of plants under excessive Cu conditions. The information offered a new approach to preparing promising practical materials for alleviating Cu toxicity in plants with potential application in fields.


Subject(s)
Cucumis sativus , Fullerenes , Copper/toxicity , Fullerenes/pharmacology , Water/chemistry
4.
Microorganisms ; 10(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35208771

ABSTRACT

The composition of superficial deposits in urban environment and their importance in the development of the lithobiotic community of microorganisms has been investigated. Polyols, organic acids, mono- and disaccharides, as well as some amino acids, are the predominant low molecular weight organic components in superficial deposits, although the conditions on the stone surface are undoubtedly oligotrophic. Superficial deposits accumulate heavy metals, including Fe, Mn, Zn, Cu, Pb, and Cd, in surface sediments, among which the potentially toxic elements Zn, Cu, and Pb are accumulated in rather high concentrations. On model of Aspergillus niger as an example, it was shown micromycetes are resistant to heavy metals and retain their physiological activity when grown on this substrate. According to cultural studies, as well as metagenomic analysis, stress-resistant fungi and dark organotrophic bacteria are the main inhabitants of surface sediments. Probably, in the conditions of accumulation of superficial deposits on the stone, these organisms are the main inhabitants of the surface of the stone. With the development of more multi-species lithobiotic communities, they form the core of these communities. In the urban environment this type of primary colonization of the stone is likely realized.

5.
PLoS One ; 16(5): e0251396, 2021.
Article in English | MEDLINE | ID: mdl-33999962

ABSTRACT

The unique properties of carbon-based nanomaterials, including fullerenol, have attracted great interest in agricultural and environmental applications. Iron (Fe) is an essential micronutrient for major metabolic processes, for which a shortage causes chlorosis and reduces the yield of many crops cultivated worldwide. In the current study, the metabolic responses of Cucumis sativus (a Strategy I plant) to fullerenol treatments were investigated depending on the Fe status of plants. Cucumber plants were grown hydroponically, either with [+FeII (ferrous) and +FeIII (ferric)] or in Fe-free (-FeII and -FeIII) nutrient solution, with (+F) or without (-F) a fullerenol supply. Iron species-dependent effects were observed in either Fe-fed or Fe-starved plants, with alteration of metabolites involved in the metabolism of carbohydrates, amino acids, organic acids, lipophilic compounds. Metabolic perturbations triggered by fullerenol in the FeIII-treated plants were in the opposite kind from those in the FeII-treated plants. Whereas in the FeIII-fed plants, fullerenol activated the metabolisation of carbohydrates and amino acids, in the FeII-fed plants, fullerenol activated the metabolisation of lipophilic compounds and repressed the metabolisation of carbohydrates and amino acids. In FeIII-deficient plants, fullerenol stimulated the metabolism of C3 carboxylates and lipophilic compounds while repressing the metabolism of amino acids, hexoses and dicarboxylates, while in FeII-deficient plants, activations of the metabolism of amino acids and dicarboxylates and repression of sterol metabolism by fullerenol were observed. The results indicated that the valence state of Fe sources is of importance for re-programming metabolome responses in cucumber to fullerenol either in Fe-sufficient or Fe-deficient conditions. These investigations are significant for understanding fullerenol interactions and risk assessment in plants with different Fe statuses.


Subject(s)
Cucumis sativus/drug effects , Fullerenes/pharmacology , Iron/metabolism , Cucumis sativus/metabolism , Hydroponics/methods , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism
6.
PLoS One ; 15(5): e0232765, 2020.
Article in English | MEDLINE | ID: mdl-32365099

ABSTRACT

The water-soluble fullerenols are novel carbon-based nanomaterials with unique properties, which afford them with wide agricultural applications. Iron (Fe) deficiency is the most common and widespread nutrition disorder affecting plants. Foliar Fe treatments of plants have been carried out with solutions devoid of fullerenol. In this study, the role of fullerenol [C60(OH)22-24] in alleviation of Fe deficiency in Cucumis sativus (a Strategy I plant) via foliar fertilization was investigated. Cucumber plants were grown hydroponically, either with (Fe) or in Fe-free (-Fe) nutrient solution. The following foliar spray treatments were applied: fullerenol at final concentrations of 1 (F1) and 10 (F10) mg L-1; Fe(II)SO4·7H2O; Fe(II)-EDTA (ethylenediaminetetraacetic acid); and Fe(II)-F1 and Fe(II)-F10. The best used compound was a combination of Fe(II)-sulfate with fullerenol, especially Fe-F1. The addition of fullerenol to Fe(II)-sulfate solutions significantly increased leaf-active Fe (extracted by an Fe(II) chelator) and re-greening at the site of application. The fullerenol-induced mutual influences did not appear when fullerenol was sprayed alone, suggesting a beneficial role of Fe(II)-fullerenol interactions in the penetration of Fe(II) in the leaves and re-greening under Fe-limited conditions. The results are of importance to enhancing the potential of foliar Fe fertilization as the commonly used strategy for ameliorating Fe deficiency and improving crop yield and quality.


Subject(s)
Cucumis sativus/metabolism , Fullerenes/pharmacology , Iron Deficiencies , Plant Leaves/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Chlorophyll/metabolism , Cucumis sativus/drug effects , Cucumis sativus/growth & development , Hydroponics , Particle Size , Plant Leaves/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Spectrophotometry, Infrared , Static Electricity
7.
J Plant Physiol ; 231: 364-373, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30388676

ABSTRACT

Strategy I plants may respond to iron (Fe) deficiency by rhizosphere acidification. Here, the role of medium pH-values in silicon (Si)-induced mitigation Fe deficiency in Strategy I plants (Cucumis sativus) was investigated, particularly the metabolites regulated by a lack of Fe, using a target metabolomics approach. Plants were grown hydroponically, either with (+Fe) or in Fe-free (-Fe) nutrient solution, with (+Si) or without (-Si) a Si supply. The nutrient solution was adjusted to pH 5.0 or 6.0 and checked daily. Leaf metabolites potentially involved in Fe transport were determined. The typical Fe responses of cucumber (e.g., decrease in leaf chlorophyll, Fe imbalance) were more pronounced when plants were grown at pH 6.0 than 5.0, during long-term Fe deficiency (15 days). Major metabolites up-regulated by Fe deficiency and found in young leaf were succinic, citric and glutamic acids, respectively; their maximal concentrations occurred in Fe-starved plants grown at pH 6.0 without Si supply. Silicon (Si)-induced effects accompanied with alleviation chlorosis symptoms, were most distinct in plants grown at pH 6.0 for an extended period without Fe. Changes in abundance of metabolites specifically up-regulated by a lack of Fe may be manifested before any Si-induced changes in plant Fe content were apparent, suggesting that metabolite responses are highly sensitive to a Fe-dependent signal altered by Si treatments under Fe deficiency. The results indicate that Si supply was more evident when plants were more stressed by an increase in nutrient solution pH under Fe-limited conditions.


Subject(s)
Cucumis sativus/drug effects , Iron Deficiencies , Silicon/pharmacology , Chlorophyll/metabolism , Citric Acid/metabolism , Cucumis sativus/metabolism , Glutamic Acid/metabolism , Hydrogen-Ion Concentration , Hydroponics , Plant Leaves/drug effects , Plant Leaves/metabolism , Succinic Acid/metabolism
8.
J Plant Physiol ; 218: 100-108, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28818756

ABSTRACT

Aluminium (Al) is one of the major stressors for plants in acidic soils, negatively affecting plant growth and nutrient balances. Significant efforts have been undertaken to understand mechanisms of Al tolerance in plants. However, little is known of the relevance of iron (Fe) and silicon (Si) nutrition under Al stress conditions. The objectives of this study were to determine whether effects induced by Fe and Si are of importance for limitation of Al moving via xylem in plants (Cucumis sativus L.). Cucumber plants (cv. Phoenix and Solovei) were grown (i) hydroponically in a complete nutrient solution at pH 4.0, either with (+Fe) or in Fe-free (-Fe) nutrient solution, without (-Si) or with (+Si) supply of Si, without (-Al) or with (+Al) exposure of Al and (ii) in soil. Xylem sap concentrations of Al, Fe and Si were measured. To characterise the pattern of xylem sap transport of Al and Fe, metabolomic changes of root tissues were investigated. Although the growth of cucumber plants was not significantly affected by Al3+ (Al-tolerant), Al exposure decreased xylem sap Fe (+Fe plants) and increased ferric chelate reductase (FC-R) activity of roots (-Fe plants). On the other hand, Fe supply greatly mitigated the Al-induced increase in xylem sap Al. The ameliorative effect of Fe depended on plant genotypes and was more pronounced in the more Fe-efficient cultivar Phoenix, which presented the highest level of xylem sap Fe. Xylem sap Fe was positively correlated with root serine, succinic and fumaric acids, suggesting that a probable underlying mechanism of Al tolerance might involve the chelation of Fe by biosynthesis of these chelating compounds. The Si-modulated root succinate increase appears to be of great importance for facilitating long-distance transport of Fe, thereby hindering Al transport from roots to shoots. The results highlight for the first time the importance of both Fe and Si supply in plant exclusion of Al under acidic conditions.


Subject(s)
Aluminum/metabolism , Cucumis sativus/physiology , Iron/metabolism , Silicon/metabolism , Soil/chemistry , Cucumis sativus/growth & development , Hydrogen-Ion Concentration , Plant Shoots/metabolism , Xylem/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...